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Abstract—Quantum networks are envisioned to enable reliable
distribution and manipulation of quantum information across dis-
tance, forming the foundation of a future quantum internet. The
fair and efficient allocation of communication resources in such
networks has been addressed through the quantum network util-
ity maximisation (QNUM) framework, which optimises network
utility under the assumption of predetermined routes for com-
peting user demands. In this work, we relax this assumption and
aim to identify optimal routes that maximise the overall network
utility. Specifically, we formulate the single-path utility-based en-
tanglement routing problem as a mixed-integer convex program
(MICP). The formulation is exact when negativity is chosen
as the entanglement measure for utility quantification or the
network supports sufficiently high entanglement generation rates
across demands. For other entanglement measures considered,
the formulation approximates the problem with over 99.99%
accuracy on evaluated real-world examples. To improve compu-
tational tractability, we then propose a randomised rounding-
based heuristic and an upper bound using the relaxation of
the MICP. Furthermore, based on min-congestion routing, we
introduce an alternative randomised heuristic and upper bound.
This heuristic is computationally faster than the previous one,
while both the heuristic and the upper bound often outperform
their counterparts on considered real-world networks. Our work
provides the framework for extending classical flow-based and
quality of service-aware routing concepts to quantum networks.

Index Terms—Entanglement routing, network utility maximi-
sation (NUM), quantum network utility maximisation (QNUM),
mixed-integer convex program (MICP), randomised rounding.

I. INTRODUCTION

Quantum networks hold the promise of facilitating
tasks [[1]-[3] which are fundamentally beyond the reach of
classical networks. The performance of a communication net-
work at both user and network levels is typically characterised
by Quality of Service (QoS) metrics that capture the needs of
underlying applications. A common framework for optimising
QoS at the network level is network utility maximisation
(NUM) [4], [5]. NUM quantifies user satisfaction through a
utility function that maps the allocated network resources to
individual utilities, which are then aggregated at the network
level. The network utility is subsequently maximised over
all feasible resource allocations to achieve the most fair
and efficient resource distribution. In contrast to classical
networks, where transmission rate typically constitutes the
primary communication resource, user utility in quantum
networks fundamentally depends on both entanglement
generation rate and fidelity. This problem is termed quantum
network utility maximisation (QNUM) [6], and approaches
for its efficient solution have been investigated in [/7]].
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Notably, QNUM addresses network utility maximisation
under the assumption that routes are predetermined for each
demand, represented by pairs of end nodes. In this work, we
relax this assumption and seek to identify routes that maximise
the highest achievable network utility. In other words, our ob-
jective is to jointly optimise network utility over both feasible
routes and resource allocations. Such problems have been stud-
ied in classical networks, arising naturally in the contexts of
QoS routing [8]], optimal network pricing [9] and opportunistic
routing in wireless networks [10]]. Utility-based routing can
be viewed as a generalisation of network flow models [11]],
which have been extensively employed for diverse objectives
including throughput maximisation and congestion minimisa-
tion and remain relevant in modern networks [[12[]. A general
framework for addressing such problems was established
through multipath utility maximisation [13]], which requires
the candidate routes for each demand to be precomputed.
However, in general, the number of feasible routes for a given
demand grows exponentially with network size.

In the context of quantum networks, the problem of routing
entanglement has recently received significant attention.
Rather than providing a comprehensive review of this
expanding literature (see [14] and references therein for
an exhaustive overview), we focus on summarising key
approaches and clarifying how their objectives differ from
ours. Ref. [15] proposes a method to minimise the number
of quantum measurements required to establish an end-to-end
(e2e) link by modifying cost inputs to Dijkstra’s algorithm
suitably, while [16] proposes a decentralised method for
shortest-path routing. A majority of the literature has
focused on optimisation of entanglement generation rate. For
instance, [[17] presents greedy strategies for maximising gen-
eration rate on 2D grids and extending to multi-demand rate
region maximisation, whereas [18|] applies a multi-commodity
flow formulation to maximise generation rate under multiple
demands, enforcing fidelity guarantees by limiting hop counts.
On the fidelity side, [[19] derives low-complexity purification-
enabled algorithms providing fidelity guarantees. Moreover,
dynamic settings have been explored in [20]], addressing
peak demands, aggregate rate or service delay, and in [21]],
aiming to satisfy the maximum number of user demands
within deadlines. However, the problem of fair and efficient
resource allocation via entanglement routing remains largely
unexplored, a gap this work seeks to address. We specifically
study the single-path utility-based entanglement routing



problem, where each demand is routed along a single path.
In a naive approach, the single-path utility-based routing
problem can be solved by addressing multiple instances of the
QNUM problem, each corresponding to a feasible routing for
given demands, and selecting the one with the highest network
utility. However, the number of feasible routes for a given
demand grows exponentially with the number of network
nodes n, rendering this approach computationally prohibitive.
To address this, we make the following contributions:
¢ We formulate the utility-based routing problem as
a mixed-integer convex program (MICP) with 2kl
binary and 6kl+ k41 variables in total, where k£ and [
denote the number of demands and links, respectively.
Following [6]], we only consider secret key fraction
(SKF), distillable entanglement (DE) and negativity as
entanglement measures [22f, the function that quantifies
the user satisfaction for an allocated fidelity level. While
the MICP is exact for negativity, or when the network
supports sufficiently high entanglement generation
rates per demand, we propose a method to bound the
approximation error for other cases. For considered real-
world examples, the error is seen to be below 0.001%.
e While the MICP remains tractable for networks of
moderate size, we propose to use its convex relaxation for
(i) deriving an upper bound for the maximum achievable
network utility and (ii) a randomised heuristic based on
the idea of randomised rounding [23|| for large networks.
e We further introduce a min-congestion-based [23]]
randomised heuristic which is computationally faster
and an associated upper bound. On evaluated real-world
examples, the second randomised heuristic consistently
yields superior average performance, while the upper
bound is often closer to the optimum than its counterpart.
The rest of the paper is structured as follows. Sect. |l intro-
duces the network model and entangled link generation pro-
cess. The general problem formulation is presented in Sect.
followed by the direct link-based and min-congestion formu-
lations in Sect. and respectively. Finally, Sect. [V]
presents numerical evaluations on real-world networks.

II. PRELIMINARIES
In this section, we provide a brief overview of the network

structure and the state description of the quantum communi-
cation links within the network. Notation-wise, we use [m] to
denote the set {1,2,...,m} for m €N, whereas B; and B,;
respectively denote the jth row and ¢th column of a matrix B.
A. Network and demands

We represent the network topology as a graph G:=(V, E),
where V' denotes the set of nodes and E denotes the set
of edges. The end nodes in V' correspond to users and the
edges in F represent the direct quantum communication links
between adjacent nodes. We assume that we are given a set
of demands D, comprising k source-destination (SD) pairs

D = {(Si,ti) : Si,ti S V; 1€ U{Z]} . (1)

A route is defined as a path in G between the corresponding
SD pair. We restrict routes to simple paths for each SD pair,

a choice we will later show entails no loss of generality. We
assume that demand (s;,t;) (alternatively, demand ¢) has p;
many routes. We index the routes sequentially and the set of
route indices serving demand ¢ is denoted as I;. Further, We
prune the edges and vertices that are not incident on any route.
We update the notations G, V, E to denote this pruned graph
and assume that G has r routes and [ links in total. That is,
r:Zpi, l=1E].
i€[k]

B. Link Generation and State Description

In our network graph, each edge represents a direct quantum
communication link between adjacent users/repeaters. We
assume that entanglements in these elementary links are
produced using the single-click protocol [24], where the
generated states have the following form:

p=1—=a) )T+ alt)(11] . )

Here o denotes the bright-state population and |¥) is a
Bell-state orthogonal to the bright state |11). The probability
of success of each generation attempt is given by
Delem = 2KM0¢
where x € (0,1) is a multiplicative factor accounting for the
inefficiencies other than photon loss in the fibre. Further, n
denotes the transmissivity of the link from one end to the
midpoint heralding station. For a link of length L km, its
transmissivity can be calculated as 7 = 107002,

Motivated by the mathematical convenience of handling
Werner states and the fact that any bipartite state can be
transformed into a Werner state of same fidelity [25], [26],
we assume that the elementary links generated as (Z) are
further converted to Werner states. Accordingly, the link state
can be described as

Pw = w“l/+><\ll+| + (1 — w) H4/4 . 3)
For the states in (2)) and (@) to have same fidelity, we must have
1+3 3(1 —
1—(1:7—’_41”7 ie., :7(410)-

If entanglement generation is attempted every 7' unit of time,

the resulting generation rate can be expressed as

Delem . 3KN

— =d(1 - th d:= — 4
o d(1—w) with di= 2 @

which provides the effective rate-fidelity

elementary link generation.

III. ASSUMPTIONS AND FORMULATION

trade-off in

To describe the problem formally, we make the following
assumptions, many of which are similar to that of [6], [[7].
Al Static network: Analogous to classical NUM and QNUM,

we aim to distribute communication resources in a static
setting. Specifically, routes and their corresponding rate-
fidelity allocations are determined before the network
goes into operation. We assume that each route supports
a single application throughout the operational period,
implying the derived value of an allocation remains the
same for a demand over time. The network topology is
also assumed to be fixed.



A2 Entanglement swapping: End-to-end entanglement be-
tween the terminal nodes is established via a two-step
process. First, entanglement is generated at the link level
between adjacent nodes. Then, entanglement swapping
is performed at intermediate repeater nodes along the
path to produce e2e entanglement [27]. Following [6],
[7], we assume the simplified setting where link-level
entanglements are generated simultaneously and swapped
immediately, avoiding decoherence. Since swapping two
Werner states yields another Werner state whose parameter
equals the product of the initial parameters [28], this
enables a concise representation of the e2e link.

Rate and fidelity of entanglement generation: As
described in Sect. the rate-fidelity trade-off of the
elementary link generation is inspired by the single-click
protocol and follows the realtion (Ef[) That is, if we fix
the fidelity of link j € [I] by setting its Werner parameter
to wj, the maximum entanglement generation rate will
be p; = dj(l—’LUj), where dj = 3I£j77j/2Tj @]) Note
that [Ef] implies that w;’s are set in advance and remain
fixed throughout network operation. Consequently, the
contributions of the jth link towards the e2e Werner
parameters are identical for all routes traversing it.
Utility of a demand: We first define the overall (binary)
link-route incidence matrix A, where a;p, :=((A4))jm =1
iff the mth route traverses link j. Recall that we restrict
our choice of routes to simple paths. The link-route
incidence matrices corresponding to valid single-path
routings of the & demands belong to the following set

P(A):={A e{0,1}**: A, =A.,, for someme I;}
&)
Since each demand is served via a single route, we
denote the rate allocated to demand ¢ by x; and the e2Ze
Werner parameter by u;. As the total rate allocated to
demands cannot exceed a link’s maximum entanglement
generation rate for any valid single-path routing A, we
must have Zie[k] aj;x; < pj, where a;; = ((A));:- Recall
from [A2] that the e2e Werner parameter is the product of
link-level Werner parameters. Given a routing A, we then
have u; =T ep w;”- We quantify the suitability of the
fidelity (e2e Werner parameter to be precise) allocation wu;

using a nonnegative non-decreasing function f;, where

fi:[0,1] — [0, 5]
Um, = fi (um)

In the QNUM framework, f;’s are generally taken to be
entanglement measures [22], secret key fraction or fidelity
of teleportation. Following [6], the utility of a demand
is assumed to have the form z;f;(u;). Importantly, the
demand utility is a function of the routing A.
Network utility: For a given single-path routing A, the
network utility /(A) is defined as the product of the
demand utilities:

UA) = H xlfl( H wf”) (6)
]

i€[k] JE[

A3

A4

AS

Note that alternative forms for route, demand and network
utility functions are possible. However, the product form
guarantees that a given network utility level is reached
only when each demand receives sufficient rate and
fidelity. In canonical NUM, the utility is typically written
as Inlf = Zl In U;, where U; is the utility of demand «.
In contrast, we follow the welfare economics convention
[29], from which NUM originates, to motivate our
formulation. Both approaches are clearly equivalent for
the purpose of utility maximisation.

Based on these assumptions, we now formulate the utility-

based entanglement routing problem.

A. The Utility-based Entanglement Routing Problem

We denote the rate allocation vector for the demands by
l_":(.’ﬂl,iﬂg,..‘,l'k) and the Werner parameter vector for
the links by W= (wy,ws,...,w;). Also, let flj denote the
jth row of routing A. The single-path entanglement routing
problem can then be written as

max
TEA iy ol
st. 0 < &, (Non-negative rates) (7
0 < @ =< I, (Fidelity bounds)
(A;, ) <pj=d;(1—w;) Vje[l], (Rate constraints)
A € P(A). (Single path constraint)
Here, =< denotes element-wise inequality and (flj, z)

denotes the dot product of A; and Z. As argued in [7],
the monotonicity assumption on f;’s lets us replace the
inequality in the rate constraints in by the equality
w;=1—(A;,7)/d; and thereby eliminate o:

moa(fi(- %)) o

max
%A i€[k] i=1
st. 0=<7, )
(A;,8) <d; Vjell, (10)
AePA). (11)

Remark 1. Note that on a non-simple path, removal of the
loops increases the value of the e2e Werner parameter and,
by monotonicity of entanglement measures f;, the value of the
objective function @) as well. Thus, the restricting A to simple
paths can be done without loss of generality.

Remark 2. Entanglement measures require f;(u) = 0 for
u < 1/3 as Werner states are separable until the threshold
Werner paramter value of 1/3. However, if we only require
fi’s to be non-decreasing and non-negative, for the special
case fi(u)=1 and d;=1Vi,j, the objective function in (§)
attains the value 1 iff there exist edge-disjoint paths (EDP) for
the given demands. Since the EDP problem is NP-hard [30)],
this implies that under this relaxed assumption, the single-path
entanglement routing problem cannot be solved efficiently.
For a given demand, the number of paths is in general
exponential in the number of nodes n (i.e., |V|), which



implies that the number of candidate routings Ain (T1) grows
exponentially with n. To address this, we present a link-based
formulation of (8)—(LI)). For certain entanglement measures f;,
the problem reduces to an MICP with 6kl+k+1 variables (of
which 2kl are binary), or can be closely approximated by it.

IV. LINK-BASED FORMULATION
A. Direct Formulation

To formulate the optimisation problem solely in terms
of demand-based link-level variables, we first convert the
undirected network graph into a directed one by replacing
each undirected edge with two directed edges, which are
then re-labelled. We denote the indices of the directed edges
(communication links) in the new graph by j’, in contrast to
7 in the undirected graph. We now introduce the variables
required to define the single-path routing problem.

e(4) the set comprising two directed link indices cor-
responding to the undirected link j, j € [{]

5% (v) the set of indices of incoming links at v, v € V
0~ (v) the index set of outgoing links from v, v € V'
Tij the rate allocated to demand 4 on the j'th directed

link, i € [k],j" € [2]]

We group the rate allocation variables into the following

allocation vector
A xd
T = (.’L‘ll,l’lg,..., .’Ekgl). (12)

Now, the rate allocated to demand i is given by the maxi-
mum allocation to this demand over links originating from its
source node s;, i.€., max;ics-(s;) Tij7- Also, the (j,)th ele-
ment a;; of the routing matrix A is 1 iff there is an allocation
on this link in either direction, i.e., > . jree(y) Tigr > 0. We can
thus rewrite the contribution of (undlrected) link j to the e2e
Werner parameter of the route serving demand ¢ in (§) as

A7)\
w”(?): (1_<le>) :1_]]_{ S >0} Z m”//dj7
J
(13)

T ekl g ee(y)
where 1y denotes the indicator function. This gives following
link-based formulation of the single-path routing problem:

L1205+ 3y LThlyTk2y -«

max max 1:1 5 W5 14
H( max J)f<H i ) (14)
stz >0, Vielk], Vi e€[2]] (15)
ziy < dj, Vi el (16)
i€(k], 5’ €e(4)
Z ]l{:ci_7~/>0} §17 V’Ue‘/v Z ]l{zij/>0} :07 Vi€ [k:]
j'est(v) j'edt(si)
(17)
S 1, s SLVEV, Y 1g,n0)=0; ViE[K]
J'E€8 (v) 3'EST ()
(18)
S mi— > @iy =0, Vo¢{si,t:}, Vi€ k] (19)

3’ €8T (v) j'€s (v)
We now explain the constraints:
e Positivity: rate allocations must be nonnegative (15).

o Capacity constraints: the total bidirectional allocation on
the jth (undirected) link cannot exceed d; (see (10)).

o Single path: for each demand, at most one incoming
link (resp. outgoing) of a vertex can have a positive rate
allocation (resp. (I8)), while there are no allocations
on the incoming (resp. outgoing) links to the source
(resp. destination). This also ensures absence of loops.

e Flow preservation: for each demand, the incoming and
outgoing rates must be equal at each node, except for
the corresponding source and destination (T9).

Proposition 1. The route-based @®)-(11) (R) and link-
based (T4)—(19) (L) formulations are equivalent.

Proof sketch. We need to show that any feasible solution of
(R) corresponds to a feasible solution of (L) with the same
objective value, and vice versa. Given a feasible (Z, fl) for (R),
each demand ¢ is assigned a unique route A.; with allocation
x;. This route decomposes into a sequence of adjacent directed
links from s; to ¢;. Setting x;;, = x; on these links and z;;» =0
elsewhere satisfies constraints (I3)—(19), and the objective
values match by the argument preceding (T3).

Conversely, for any feasible solution of (L), constraint (I8)
implies that for each demand i, x;;» can be positive on at
most one outgoing link from s;. Together with flow conserva-
tion (T9) and no positive outgoing flow from ¢; constraint (T8},
this yields a unique directed simple path fl:i from s; to t;
whenever such a positive allocation exists on one outgoing link
from s;. Then z; is set equal to the common nonzero value of
x5 along the route fil If all outgoing allocations from s; are
zero, any path from s; to ¢; may be selected, yielding a cor-
responding feasible solution of (R) with zero network utility.
A detailed proof will be given in an extended version. O

We now update formulation (L) to make it an MICP.
o Surrogate variables for single path constraints: we define

Yijr = Lz, >0, Vi€ k], Vi" € [21],
and accordingly introduce the following constraint:

zij <djyijr, Ty >eyijr, yir €40,1}, Vi, V5", (20)

where € > 0 is arbitrarily small. Since the utility is zero
when any demand lacks a positive allocation on at least
one outgoing link from its source and one incoming link
to its destination, we eliminate such cases by updating
the single-path constraints (I7)-(T8) to:

Zy” <1,VoeV\{s:}, Zyul—() Vie k]

J'€6F (v) 3'€6% (si)

Z Yij’ <1, V’UE‘/\{ti}‘7 Z Yijr = 0; Vie [k‘]
j'es—(v) §'es—(ts)

Sy =1, Y yiy =1;Vielk]
3'€6(si) 3t (t:)

2D
Also, absence of loops implies
= Y i <1, de, ylh € {0,1} Vi, 5 (22)

J'€ed)



We group the binary surrogates into vectors % and ¢/ .
o Surrogate variables for Werner parameters: we define

oj= Y /g, Viel] (23)
J'€e(4), i€[k]
Yij 1= yl'; oj, Vie [k], Vie[l] 24)
=In(1—;), Vielk], Vje[l] (25)
l
zii= Y wvij, Viel[k]. (26)

That is, the Werner parameter w;;(7) from is
reformulated as e". Eq. (23) and (26) are linear
constraints. We modify (23) to

vy <l =), Vielk], viel] @D
which corresponds to a convex region due to concavity
of the RHS. This does not relax the problem, as the
objective function is non-decreasing in v;;’s. Further,
using 0<o0; <1 (capacity constraint) and 22), we
enforce (24) via its exact McCormick relaxation [31]|:

Yij < y;E, vij = 0,

Yij < 0igs Yij = oig—(1=y5)
We then replace y” in @8) by >-.iccj ) Vi’ and denote
the respective vectors of the surrogates as 7,7, v/, 2.

o Objective function: instead of maximising the objective
function from (T4), we take logarithm and minimise its

negation. Using the convention In(0) = —oo, which acts
as a barrier, the reformulated objective becomes

-2 (g )+

} Vielk], Vie(l] (28)

1€[k]
Now, the term — ln(max 1€5- (s5)Tig! ) can be convexly
reformulated using the perspectlve transformation [32]:
Ai= Yty with (29)
J'€6(s4)
—Yij (i /yiy)  yi >0
tij/ =<0 Tij = 0, Yijr = 0 (30)
00 otherwise,

due to the presence of the constraint

> oy =1, yiy €{0,1} Vi
§'€6= (s5)

Here, convexity of —In ensures that the perspective
reformulation is convex in (?737) [33, Sect. 3.2.6].
For the fidelity component of the objective function, we
introduce the shorthand F;(z):=In f;(e*), i€[k]. Fol-
lowing [|6], from now on we only consider three entangle-
ment measures: SKF, a lower bound to DE and negativity.
The function F; is concave for negativity, whereas for
the first two measures, we use the corresponding concave
envelope F;, which closely approximates Fj;. For the
derivation and justification of this approximation see (63)
and Fig. [2] in the Appendix. We will also empirically
validate the approximation accuracy in Sect. [V]

The observations above imply that the single-path entangle-

ment routing problem can be expressed as the following MICP
for the specified choices of entanglement measures.

Hmln ()\ —F; (zl)) 31
T;’y. > i€[k]
v, U,
st. 0<%, (32)
S my<d,Viel] (33)
i'€e(3), i€lk)
Z Tijr = Z Tigty Vv%{si,ti}, V’LE[]{J] (34)
jlestw) '€ (v)
v € {0,1}, Vj' €[21], Vi€ [K] (35)
wiy < djyig, €(3) 355 Vi€ [21], Vie k] (36)
iy > ey, Vi€ [21], Vie[k] (37
> iy <1, WweV\{si}, Vie k] (38)
3'€8F (v)
>y <1, Ve V\{ti}, Vielk] (39)
i'€5= (v)
S wip=1, >y =0; Vic[k] (40)
3'€8 (55) J'est(sq)
S wi =0, > iy =1; Vielk] (1)
i'€6= (1) i1 €6+ (t)
o=y, vl Vie(l (42)
i'€e(), i€lk]
vii <Yy, Vi€ [l), Vi€ k] (43)
j’€e(d)
Vi < 0j, Vi€ ], Viek] (44)
~vij > 0,Vje[l], Vie[k] 45)
vig 205 =1+ Y wi, Vi€ [l], Vielk] (46)
)
vij < In(l =), Vi€ [I], Vi€ k] 47)
l
z=Y vy, Vi€ k] (48)

Remark 3. The only potential source of inexactness in the
formulation is the overestimator F,. For networks with suffi-
ciently high entanglement generation rates per demand, the
MICP remains exact because F differs from F; only beyond
a threshold Z. In high-rate regimes, the optimal solution does
not exceed this threshold, as increasing the rate is more
advantageous than improving fidelity (f; < 1 for considered
entanglement measures). This can be readily verified from
the solution. Otherwise, rerunning the MICP with a concave
underestimator F; in place of F, provides a bound on the
approximation error, given by the gap between the two optimal
values. See Fig. |2| and the appendix for further details.

The MICP can be solved using standard MICP solvers,
which remains practical for instances with moderate size. For
larger networks, we propose an upper bound and a randomised
heuristic as follows.

Upper bound: we obtain a convex relaxation of the MICP by
modifying the integrality constraint (33) to: 0 <y,;» <1, Vi, j'.
We also explicitly include the following constraints, which
were automatically true earlier due to (33). The first constraint



is introduced to mitigate path splitting and it allows us to drop
either or (39), while the second one enforces (22)).

Soowip = Y v, Yod{siti}, Viclk],  (49)
yestw) e (v)

> iy <1, Viel], Vielk]. (50)
J'€e(s)

The relaxation provides an upper bound to the maximum
achievable utility under single-path routing.
Randomised heuristic: Following the idea of randomised
rounding [23]], we introduce a heuristic as follows:

e Route sampling: for each demand, the output variables
yi;» from the relaxed MICP are interpreted as probabili-
ties. Employing the path-stripping algorithm [23]], we ex-
tract directed paths between each source and destination,
with corresponding weights. Because the total outgoing
and incoming probabilities at the source and destination
respectively sum to one (constraints (@0) and (@I))
and flow is conserved at intermediate nodes (@9), this
procedure indeed yields a valid probability distribution
over output routes for each demand; see [23[] for details.

o Allocation optimisation for fixed routes: once a fixed route
is sampled for each demand, we use the convex QNUM
formulation [[7]] to compute the optimal rate allocation Z.

Next, we propose an alternative heuristic and upper
bound inspired by minimum-congestion routing in classical
networks [23], both of which often outperform their
counterparts on evaluated examples. The use of minimum-
congestion routing is motivated by the dependence of a route’s
e2e Werner parameter on the congestion of its constituent
links (I3). Both the heuristic and upper bound begin by
solving an LP that provides a lower bound on maximum
congestion. Overall, the heuristic is computationally faster
than the previous one, while the upper bound requires solving
an MICP with £ binary and 8k-1 total variables in the second
step, substantially fewer than in the original formulation.

B. Minimum Congestion-based Heuristic and Upper Bound

Definition IV.1 (Maximum congestion). For a valid routing

A as introduced in @), its maximum congestion is defined as

the highest number of routes traversing any single link, i.e.,
Cmax(A) = max(AT).

As shown in [23, Sect. 3], minimising the maximum
congestion over all possible routings can be formulated as a
mixed-integer linear program and then relaxed to an LP for
large networks. Let ¢ denote the optimal congestion value
obtained from the LP; then [c¢] provides a lower bound on
the maximum congestion. By interpreting the fractional LP
solution as probabilities, [23|] proposes a randomised routing
strategy, which forms the basis of our heuristic.
Randomised heuristic: For each demand, a route is sampled
according to the randomised routing strategy of [23] Sect. 3].
Given these sampled routes, the convex QNUM formula-
tion [7] is applied to compute the optimal rate allocation Z.
This heuristic is computationally faster than the previous one,
as the min-congestion LP is faster than the MICP’s relaxation.

Upper bound: first, we introduce the following notation:
the jth largest element among the link-specific constants
d:= (di,dz,...,d;) is denoted by d;). Given a lower bound
to the maximum congestion level [¢], we can obtain an upper
bound to the achievable network utility by considering the
following optimistic scenario:

o Single-link congestion: we assume all but one link support
at most one route, while the remaining (congested) link
experiences a congestion level of [¢]. The corresponding
rate-fidelity trade-off constant is taken as dy).

o Shortest-path routing: all demands are assumed to be
routed through their respective shortest paths, with \;
denoting the corresponding path length for demand
i € [k]. Furthermore, the e2e Werner parameter can
be upper bounded by assuming that the rate—fidelity
trade-off constants along uncongested links attain their
best possible combination: {d(1),d2),...,d,—1)}-

Determining the maximum achievable network utility then
reduces to selecting the subset of demands routed through the
congested link. Let a; € {0,1} denote the route assignment
variable for demand i, and let & denote the corresponding
vector. The upper bound can then be formally expressed as
follows. The proof follows directly from the reasoning above
and is omitted due to space constraints.

Proposition 2. Given a maximum congestion level [c], the
maximum achievable network utility (8) can be bounded as

l ~ G
A @)\ Wi
max H :szl(H (1—M) ) (51
02 Azxd oy =1 d
AcP(A)
T+ -, O Xyt i
<jom T (27502 11 (- 5)
—_/7;— (X9 ic[k) (1) €N —1] 7)
a'l=Jc]

The RHS of (51)) is formulated as the following optimisation
problem. We again minimise the negative logarithm of the
objective, introduce surrogates for the e2e Werner parameters
and approximate Fy(z)(=In f;(e?)) by E(z).

min _— Z lnxi—z E; (2) (52)
BEHMES el i€lk]
¢,5,U,2
st. 0< z; < d(&')’ Vi € [k} (53)
a; €{0,1}, Vi€ [k], &'1=c| (54)
ni = a;xi, Vi € [k] (55)
S = i (56)
i€[k]
0; =S —mi, Vi€ k] (57)
Ci = aiéi, Vi € [k] (58)
vi = i + G, Vi € [k] (59)
v;1 = In (1 — ’Yi/d(l)) , Vi € [K] (60)
vij =In (1==i/a;_y)), Vie[NJ\{1},Vie[k] (61
Zi = Z Vig, Vi € UC] (62)
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Fig. 1: Performance of the randomised heuristics (Rnd heuristic) and upper bounds (UB) vis-a-vis the optimum log utility
(OPT) calculated via MICP (BI)-(@8)), min-congestion-based metrics are marked as (MC). Results are shown for entanglement
measures SKF and negativity (Neg.) on BREN (10 nodes, left 2 subplots), UNIC (15 nodes) and ARNES (17 nodes, right 2
subplots) networks [34] for varying demand counts k. The MC heuristic outperforms its counterpart on average, and the MC
upper bound is often closer to OPT. Recall that log utility here equals utility as per NUM [4]], [6].

Since «; € {0, 1}, we obtain an MICP formulation by replac-
ing (53) and (58)) with their exact McCormick relaxations:
0 <d(x)ai, 1 >0, i<z, m; >wi—doy,)(1—a;) Vi
G<dmyoi, >0, (<6, G>0i—day(1—ay) Vi,
and modifying (60) and (6I) by making v;;s less or equal to
respective RHS, which keeps the problem unchanged as Eys
are increasing. In contrast to the original MICP, which involves
2kl binary variables, the present formulation requires only k&
such variables, making it practical to solve under wider cir-
cumstances. For instances with a large number of demands, the
integrality constraints can be relaxed to obtain an upper bound.
V. NUMERICAL EVALUATIONS

In this section, we empirically evaluate the proposed heuris-
tics and upper bounds on real-world networks. We consider
the BREN (10 nodes, 11 links), UNIC (15 nodes, 17 links)
and ARNES (17 nodes, 20 links) topologies from Topology-
Bench [34], a repository of optical fibre networks. The network
sizes are selected such that the optimal utility computation
via the MICP (BI)-{@g) remains tractable, which we use for
benchmarking the heuristics and upper bounds. The number of
demands k is chosen proportional to the network size n, specif-
ically k€ {4, 6,8} for BREN and k € {6, 8,10} for others. Fur-
ther, demands (SD pairs) are added incrementally according to
the table on the right. We refer the reader to [|34]] for detailed
network information, including topology, link lengths, node
locations and name-ID mapping. Also, we show the evaluation
only for two entanglement measures: SKF and negativity.

Given the link lengths L; [34]], the link-level constants d;
are computed from @) using n; = 107%92L7 and by setting
k; =01, T; = 10~3s for all links, which represents current
state of hardware efficiency [6]], [7]]. Using the constants d; and
network adjacency structure, we solve the MICP (31)-(@8) to
obtain the optimal utility; its relaxation provides the first upper
bound. The min-congestion-based upper bound is derived by
solving the second MICP (52)—(62) with & binary variables.
We use MOSEK solver with CVXPY for our computations.
Since CVXPY only allows functions adhering to its
disciplined convex programming syntax, we use piecewise
linear approximation of F, (31) with high granularity.

Both upper bounds and the corresponding randomised
heuristics are compared against the optimum in Fig. [I| We

observe that the min-congestion-based upper bound often
outperforms its counterpart, and its heuristic also achieves
higher average performance. While the first MICP (31)-3)
computes the maximum network utility exactly for negativity,
we calculate the error of approximation for SKF by rerunning
it with the concave underestimator F’Z in place of F’Z in (BI).
The approximation error is not shown in Fig. [T] as the highest
observed relative error was 0.00051% (ARNES, 10 demands),
empirically supporting our claim of accuracy of the formu-
lation. Finally, recall that the logarithmic utility in Fig. [T] is
equivalent to the utility in NUM parlance [4]], [6]; we adopted
this form [29] only to motivate our formulation in Sect.

Network Demands (incremental)

BREN  {(6,10),(10,4),(3,10),9,1}, {(5,1),(8,10)}, {(7,2).(3, 1) }
UNIC

{(8,11),(5,13),(9,1),(2,8),(11,1),(10,2)}, {(7,3),(1 1,14}, {(15,14),(1,9)}
ARNES {(2,3),(10,5),(16,2),(12,7),(3,4),(17,2)}, {(15,12),(3,1 D}, {(3,15),(2.4)}

VI. CONCLUSION

In this work, we considered the single-path version of
the utility-based entanglement routing problem, aiming to
determine optimal routes that maximise overall network
utility. Network utility was quantified using SKF, a lower
bound to DE and negativity as entanglement measures. We
formulated the problem as an MICP, which provides exact
solutions when negativity is used or when the network
supports sufficiently high entanglement generation rates.
In other cases, the formulation yields a reasonably close
approximation, as seen in real-world examples. To ensure
scalability in large networks, we proposed a randomised
rounding-based heuristic and an upper bound derived from
the relaxed MICP. We further proposed a computationally
faster randomised heuristic and an upper bound based on min-
congestion routing, which often outperform their counterparts
on real-world network topologies. Our framework can be used
for extending classical flow-based and QoS-aware routing
principles to quantum networks, enabling fair and efficient
allocation of quantum communication resources.
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Fig. 2: The estimators of F; when f;=SKF (left) with zoomed
inA on domain of non-concavity of F; (right). Error bounds:
| B — Fa| <0.0165, | Fy— Fy <0.0258,

Due to space limitations, we refer the reader to [7, Eq. 16-
18] for definitions of the considered entanglement measures:
SKF, a lower bound to DE (as adopted in [6], [7]) and
negativity in terms of the Werner parameter. Recall that for
each demand i, we transform the entanglement measure f; to
Fi(z)=In(fi(e?*)), z€( I(m)mO]. As F; is concave for negativ-
ity but not for the other two measures, we look for a concave
overestimator F}. The key property that we use is that F; has
a unique inflection point Z(;) and F; is concave in ( I(m)n, Z(5))-
Concave enevlope F}: We first derive the smallest linear upper
bound to F; passing through (0, F;(0)). This can be found
by calculating the minimal solution of F)(z)=F;(z)/z, as
F;(0) = 0. The minimal solution Z;) is found via the Newton-
Raphson method by initialising near 219 We then define

‘min*
=] BCham<i<iy
F; ( Z(i )) + F’( (l))(z—z(i)) ) 2() <z<0
Now, considering the epigraph of —F; and drawing its convex
hull, we can see that Fi is indeed the concave envelope of F;.
If the 2 values in the solution of the MICP (3T)-(8) are
below Z;), the MICP is exact for the entanglement routing
problem. Otherwise, we rerun the MICP (31)-(48) with the
underestimator £ to bound the approximation error.
Underestimator FZ We simply use the tangent of F; at the
inflection point Z(;) to deﬁne F; beyond Z(;):

(63)

Zmin <z < Z(Z)

n) + F(Za)(z—Zw) 9

] R
EO=Y e

é(i)<2§0



We show the accuracy of estimation by plotting the linear
parts of Fl and FZ vis-a-vis F; in Fig. [2| for SKF. The plots
for DE are qualitatively similar with |Fy. — Fye| < 0.0135,
| Fae — Fie || <0.0212.
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