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Abstract. We investigate the hardware requirements for quantum teleportation in an intercity-
scale network topology consisting of two metropolitan-scale networks connected via a long-distance
backbone link. Specifically, we identify the minimal improvements required beyond the state-
of-the-art to achieve an end-to-end expected teleportation fidelity of 2/3, which represents the
classical limit. To this end, we formulate the hardware requirements computation as optimisation
problems, where the hardware parameters representing the underlying device capabilities serve as
decision variables. Assuming a simplified noise model, we derive closed-form analytical expressions
for the teleportation fidelity and rate when the network is realised using heterogeneous quantum
hardware, including a quantum repeater chain with a memory cut-off. Our derivations are based on
events defined by the order statistics of link generation durations in both the metropolitan networks
and the backbone, and the resulting expressions are validated through simulations on the NetSquid
platform. The analytical expressions facilitate efficient exploration of the optimisation parameter
space without resorting to computationally intensive simulations. We then apply this framework
to a representative realisation in which the metropolitan nodes are based on trapped-ion processors
and the backbone is composed of ensemble-based quantum memories. Our results suggest that
teleportation across metropolitan distances is already achievable with state-of-the-art hardware
when the data qubit is prepared after end-to-end entanglement has already been established,
whereas extending teleportation to intercity scales requires additional, though plausibly achievable,
improvements in hardware performance.

1. Introduction

Quantum networks are anticipated to facilitate tasks beyond the reach of the classical inter-
net [1]. In such networks, remote entanglement serves as the primary resource for performing a
wide range of applications, including quantum key distribution [2,3], enhanced sensing [4], secure
remote computation [5, 6], clock synchronisation [7], and many other applications. Furthermore,
entanglement shared across spatially separated locations enables foundational tests of quantum
mechanics, most notably Bell inequality violation [8], as well as recent proposals for probing
quantum gravity effects [9], among others. A remote entangled link consists of a pair of entangled
qubits shared between end nodes, i.e., quantum devices directly accessible to users. The quality
of service for any such application depends on the quality of these links, typically represented
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Figure 1: Schematic of an intercity quantum network architecture comprising four different
components. User-controlled end nodes are denoted by circles P1–P4 and metropolitan hubs
by squares H1–H2. The border nodes, shown as diamonds B1–B2, form the backbone together
with the zig-zag line, which can be realised using either a space-based quantum communication
channel or a terrestrial linear quantum repeater chain, with individual repeater nodes depicted as
triangles. Each end node is connected to its nearest hub 25 km away and forms a metropolitan
network (MN 1 or 2). The 450 km backbone connects the metropolitan regions via the border
nodes at both ends. Together, the MNs and the backbone form the full IN, enabling long-distance
quantum communication between multiple end nodes.

by the entanglement fidelity, and the rate at which they are generated. Furthermore, the re-
quired thresholds for these performance metrics vary depending on the underlying application,
motivating a careful analysis of these metrics in realistic network architectures.

Photon transmission through optical fibre decays exponentially with propagation distance due
to attenuation losses, which limits the feasibility of entanglement generation over long distances via
direct photon transmission. Moreover, the no-cloning theorem [10] forbids the creation of identical
copies of an unknown quantum state, making classical amplification techniques infeasible for quan-
tum states. To overcome this, quantum repeaters [11] introduce intermediate nodes that enable
entanglement distribution over extended distances. Entanglement generation has been experi-
mentally demonstrated across various physical platforms, including trapped ions [12–18], colour
centres in solids [19, 20], rare-earth ions [21–23], and atomic ensemble memories [24–26], where
matter-photon entanglement is used to generate entanglement between distant matter qubits lo-
cated at remote nodes. These platforms exhibit distinct advantages and limitations, and future
large-scale quantum networks are therefore envisioned to adopt a heterogeneous architecture that
integrates multiple hardware platforms [27–29].

One of the central challenges in realising a scalable quantum network lies in identifying
the precise hardware requirements to support efficient quantum communication. Experimentally,
Pompili et al. [30] demonstrated a lab-scale three-node quantum network based on nitrogen-
vacancy centres in diamond, while Krutyanskiy et al. [16] presented a quantum repeater node
based on trapped ions capable of distributing entanglement over distances up to 50 km, marking
significant experimental milestones. On the theoretical side, the performance of single-repeater
setups and homogeneous repeater chains has been studied extensively, both analytically [31–37]
and via simulation [38, 39]. However, to the best of our knowledge, performance analyses of het-
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erogeneous repeater chains have so far relied predominantly on simulation-based approaches [39].
In the context of quantum networks, quantum teleportation serves both as a fundamental

primitive and as a high-level performance benchmark. Applications such as blind quantum com-
puting impose stringent requirements on teleportation fidelity and rate to ensure correctness and
security [40]. Beyond its direct use for communication, teleportation constitutes a key resource for
implementing non-local gates, thereby enabling the preparation of multipartite entangled states
and distributed quantum information processing [41]. At the network level, the achievable end-
to-end teleportation fidelity provides a quantitative measure of overall network performance [42].
Moreover, attaining a teleportation fidelity exceeding the classical limit of 2/3 constitutes a clear
demonstration of quantum advantage [43], analogous to Bell-inequality tests [44].

In this work, we investigate requirements for quantum teleportation in an intercity-scale
network (IN) shown in Fig. 1, consisting of two metropolitan-scale networks (MNs) and a long-
distance backbone realised as a quantum repeater chain. A detailed description of the network
model is provided in Sec. 3. We adopt standard assumptions, including heralded entanglement
generation (HEG), depolarising noise in memory, instantaneous local operations, swap-as-soon-as-
possible (swap-ASAP) policy [45], and a cut-off strategy together with the standard deterministic
teleportation protocol in which teleportation succeeds with unit probability [46]; see A1–A9 for
details. Specifically, we study the requirement for attaining a teleportation fidelity of 2/3 across
metropolitan and intercity-scale distances and carry out our analysis in a hardware-agnostic man-
ner, i.e., we characterise the network using a set of parameters capturing the essential hardware
properties. We also evaluate these requirements for a heterogeneous platform comprising trapped-
ion processors in MNs and an ensemble-based repeater chain in the backbone, thereby illustrating
their relevance to realistic quantum network implementations.

For studying the requirements, we focus on two teleportation scenarios that capture different
operational regimes:
• Entanglement-ready (ER): in ER teleportation, the data qubit (qubit to be teleported) is

prepared only after end-to-end entanglement has been established. This approach allows
the system to avoid the decoherence accumulated during the probabilistic entanglement
generation process, thereby significantly improving teleportation fidelity [47].

• Qubit-ready (QR): here, the data qubit is prepared in advance and stored in quantum
memory until end-to-end entanglement is established. This scenario naturally arises when
the data qubit preparation rate and entanglement generation rate are mismatched [48], a
condition anticipated in large-scale network architectures. The resulting memory storage
leads to additional decoherence. Although we assume instantaneous location operation and
qubit preparation (see A9), we include the QR scenario for completeness, as it represents an
extreme yet practically relevant operating regime where the entanglement generation begins
only after the data qubit is ready.

In order to determine the hardware requirements, we formulate the task as an optimisation
problem, in which the relevant cost function is designed along the lines of [39]. To solve the
resulting formulation, we first derive closed-form analytical expressions for the expected fidelities
and generation rates of both the end-to-end entangled link and teleported qubit. We then validate
the accuracy of the expressions by comparing them with empirical estimates from NetSquid-
based simulations [49]. The analytical expressions enable us to efficiently identify the hardware
requirements without resorting to computationally expensive simulations [38, 39, 50]. Also, to
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quantify the requirements, we introduce two reference values for each network parameter: the
baseline value corresponds to the state-of-the-art hardware capability, while the optimistic value
represents capability anticipated in the near future based on ongoing experimental advances
and theoretical predictions. We define the hardware requirements as the minimal improvements
over the baseline parameters needed to achieve the target teleportation fidelity threshold of 2/3.
Although our framework itself is hardware-agnostic, we evaluate the requirements using a realistic
network architecture comprising trapped-ion processors for the MN and a repeater chain based
on ensemble-based memories as the backbone [27, 28], along with corresponding baseline and
optimistic parameter sets.
Summary of results: We specifically address the following questions with respect to hardware
requirements:
Q1 Do the baseline parameters enable quantum teleportation in an MN with a fidelity exceeding

the classical limit of 2/3? If not, what are the minimal parameter improvements required to
reach this threshold?

- We find that current trapped-ion technology (baseline) already supports ER teleportation
at metropolitan scales, whereas QR teleportation requires further improvements and
becomes feasible with near-term experimental advances; see Sec. 6.1 for details.

Q2 Assuming that the backbone attains optimistic performance levels, what minimal
improvements to the MN parameters are required to achieve quantum teleportation with an
expected fidelity ≥ 2/3 across the IN? This analysis reveals the trade-offs among metropolitan
parameters and provides a lower bound on the required improvements for metropolitan
hardware.

- We find that although ER teleportation across IN is possible, QR teleportation requires
significant improvements beyond the baseline, which nonetheless remains within the reach
of optimistic estimates. We also identify the feasible regions in parameter space and
determine the optimal parameter configurations that minimise the hardware cost; see
Sec. 6.2 for details.

Q3 Conversely, assuming optimistic MN performance, what are the corresponding backbone
requirements to enable teleportation with an expected fidelity ≥ 2/3 in the IN? This highlights
the trade-offs between backbone parameters and establishes a lower bound on their required
improvements.

- Similar to Q2, we find that ER teleportation across IN is possible and QR teleportation
requires significant improvements beyond the baseline but is still within the reach of
optimistic estimates; see Sec. 6.2 for details.

Q4 Given baseline parameters representative of current experimental capabilities for both the
MN and backbone, what minimal joint improvements are needed to achieve an expected
teleportation fidelity ≥ 2/3 in the IN?

- In this case, neither ER nor QR teleportation is possible, and we identify the minimal joint
improvements required to attain the teleportation fidelity threshold; see Sec. 6.2 for details.

Beyond their role in the optimisation procedure, the analytical expressions and the underlying
methodology can also be used for evaluating performance metrics for heterogeneous networks and
are therefore of independent interest.

The rest of this paper is organised as follows. First, we review relevant literature in Sec. 2,
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followed by a description of the network setup and assumptions in Sec. 3. Sec. 4 formally presents
the objectives and methodology. In Sec. 5, we derive analytical expressions for the teleportation
rate and expected fidelity for the IN. Evaluations addressing questions Q1–Q4 are presented in
Sec. 6 and the conclusions are drawn in Sec. 7.

2. Related Work

We begin by surveying prior studies that are closely related to our work. This review is not
intended to be an extensive review of performance analyses of quantum repeater chains; instead,
we focus on key contributions that are directly relevant to our setting. In this context, commonly
considered performance metrics include the end-to-end entanglement generation time, end-to-end
entanglement fidelity, and secret key rate [51]. Regarding the performance of a quantum repeater,
Rozpędek et al. [37] identified realistic parameter regimes where a single sequential repeater out-
performs direct transmission. Analytical models for entanglement generation in a homogeneous re-
peater chain under various swapping and decoherence assumptions have been developed in [31–35,
45,52], while Li et al. [36] optimised cutoff strategies to improve the resulting entanglement qual-
ity. Goodenough et al. [34] derived exact formulas and tight approximations for expected fidelity
under a global cut-off policy and swap-asap policy, while Andrade et al. [35] provided closed-form
expressions for expected end-to-end fidelity in homogeneous chains with sequential entanglement
swapping. As an alternative strategy, Collins et al. [53] proposed multiplexed quantum repeater
architectures that significantly reduce sensitivity to memory coherence times. However, these
frameworks do not directly extend to inhomogeneous repeater chains where the distances between
nodes are different. In our work, we analyse a four-node repeater chain comprising two memory-
equipped repeaters, where the two outer links are identical while the central link differs, thereby
enabling heterogeneous hardware implementations. We derive exact analytical expressions for ex-
pected end-to-end fidelity and generation rate of both entanglement and teleportation with a cutoff
strategy, while fully accounting for communication delays to closely reflect real-world scenarios.

Several experimental approaches to quantum repeaters are based on atomic ensemble mem-
ories and linear optics following the DLCZ protocol [54]. Notably, Simon et al. [55] extended this
scheme by combining photon-pair sources with multimode quantum memories in rare-earth–doped
solids, enabling faster and robust entanglement generation while retaining the simplicity of linear
optics and single-photon detection. Jiang et al. [56] proposed an improved ensemble-based repeater
that allows active purification, suppresses multi-excitation noise, and achieves polynomial scaling
with realistic inefficiencies. Sangouard et al. [57] provided extensive surveys of such theoretical
proposals and compared their entanglement generation rates against direct photon transmission.
More recently, Wu et al. [58] incorporated time-dependent memory decay into the analysis and
obtained analytical expressions for entanglement rate, showing feasibility with current technology
while highlighting the importance of multiplexing. Implementations of quantum repeaters based
on other hardware platforms involve trapped ions [16,59,60], trapped neutral atoms [61,62], rare-
earth ions doped crystals [63], and colour centres [64, 65]. In particular, Sangouard et al. [59]
demonstrated that trapped-ion–based repeaters employing deterministic entanglement swapping
and temporal multiplexing can achieve substantially higher entanglement rates than ensemble-
based schemes. Experimentally, Krutyanskiy et al. [16] demonstrated a trapped-ion quantum re-
peater node that generates and swaps entanglement over two 25 km fibres, extending it to 50 km.,
and outlined near-term improvements to scale such nodes to a repeater chain of 800 km. For this
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chain, however, they assume that the memory coherence time significantly exceeds the elementary
link creation time between adjacent nodes, thereby ignoring memory decoherence. In this context,
Zwerger et al. [60] proposed decoherence-free subspace encoding to mitigate collective dephasing.
Lloyd et al. [61] proposed a cavity-based quantum network architecture in which long-distance
entanglement is stored in trapped atoms, enabling unconditional teleportation via full Bell-state
measurements. Razavi et al. [62] compared this scheme with the DLCZ protocol, noting that
while DLCZ allows faster entanglement distribution, it supports only conditional teleportation,
whereas the trapped-atom approach enables unconditional teleportation. Recent developments
include hybrid architectures combining ensemble-based repeaters with single-atom or ion-based
processors [27–29], integration of repeaters with satellite-based links for global-scale entanglement
distribution [66], and all-photonic repeaters that operate without matter-based memories [67]. In
contrast to these works, we derive the analytics in a platform-agnostic manner while adopt-
ing parameter values for evaluations from particular experimental implementations with trapped
ions [14–17] and predictions from [27,28] for the backbone; see Sec. 4.3 for details.

Finally, we review prior studies most relevant to our work that address the hardware specifi-
cations for efficient quantum communication. A critical challenge in realising quantum repeaters
is that their hardware requirements remain largely unknown. Silva et al. [38] introduced a sys-
tematic approach using genetic algorithms and NetSquid simulations to optimise entanglement
generation in repeater chains, identifying minimal hardware requirements under realistic condi-
tions. In a related work, Avis et al. [39] analysed entanglement generation between two end nodes
connected via a single repeater, determining the requirements for verifiable blind quantum com-
puting (VBQC). Their analysis considers the restrictions imposed by real-world fibre grids and
employs hardware-specific models of colour centres and trapped ions using NetSquid. Conversely,
Silva et al. [50] extended this to a multi-repeater network spanning 900 km, determining the spec-
ifications for repeaters enabling VBQC and quantum key distribution (QKD). Similarly, van Dam
et al. [68] identified the requirements for a trapped-ion server and measurement-only client to per-
form VBQC across 50 km. While these works rely on simulations in NetSquid, we derive exact
analytical expressions for teleportation rates and expected fidelities to carry out the analysis. In
particular, we identify the minimal requirements in terms of the coherence time, elementary link
generation probability, and link fidelity needed to surpass the classical fidelity threshold of 2/3
for teleportation in an MN over 50 km and a IN over 500 km 1.

3. Setup and Assumptions

In this section, we briefly introduce the quantum network setup from [69] and outline the
assumptions underlying our analysis. We specify the relevant hardware parameters that char-
acterise the network, enabling us to formally define Q1–Q4. In Fig. 1, we provide a schematic
of the network, which comprises four fundamental components: end nodes, metropolitan hubs, a
backbone, and border nodes, each serving distinct functions to enable scalable quantum communi-
cation. Given that we analyse requirements for teleportation over metropolitan (up to 50 km) and
intercity-scale (up to 500 km) distances, the network components must be equipped with capabil-
ities beyond the minimal specifications described in [69]. We now briefly describe the functions
of these components.

The end nodes, labelled P1–P4 in Fig. 1, serve as primary access points for users, supporting
quantum applications under user-defined control. These devices can generate photons entangled
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with matter qubits and possess quantum processing capabilities, such as measurement and gate
operations on matter qubits. For deterministic teleportation, we require the end nodes to possess
two quantum memories and execute classical operations, including classical protocols for coor-
dination and computation. Recent experiments [13, 14, 30, 70–72] have demonstrated promising
platforms for such end nodes, achieving long coherence times and high quantum gate fidelities
using colour centres, trapped ions, and neutral atoms.

End nodes are connected to their respective metropolitan hubs, labelled H1–H2 in Fig. 1,
which serve as central points for facilitating HEG between node pairs within an MN, spanning
city-scale distances up to 50 km. End nodes P1 and P2 together with hub H1 constitute MN 1,
while end nodes P3 and P4 with hub H2 constitute MN 2. To generate and route entanglement
between different pairs of nodes, these hubs may comprise entanglement generation switches [73]
or entanglement distribution switches [74]. For our purpose of teleportation, we only require that
the hubs contain beam splitters and photon detectors to perform Bell state measurements (BSMs)
on incoming photons from two nodes. End nodes are assumed to be connected to their respective
hub via standard telecommunication fibres supporting photonic qubit transmission.

To overcome the distance limitations imposed by fibre loss in direct photon transmission, the
architecture incorporates a long-range backbone, denoted by the zigzag line in Fig. 1, together with
border nodes B1 and B2. These border nodes (referred to as junction nodes in [69]) are located
adjacent to the metropolitan hubs and serve as interfaces between the backbone and MNs. Each
border node is assumed to contain at least two memories and to possess the same processing and
storage capabilities as the end nodes, allowing it to store entanglement both with neighbouring
end nodes and across the backbone. A key feature of this architecture is its ability to integrate
heterogeneous quantum hardware platforms, thereby leveraging their distinct advantages, such as
high-fidelity quantum gates, long memory coherence time, and multiplexing. The backbone itself
may be realised using different technological platforms. One approach relies on space-based quan-
tum communication [75–77] which offers low-loss photon transmission over long distances. Alter-
natively, a fibre-based implementation using a multiplexed quantum repeater chain [27,55,57] can
be employed, offering a promising route to preserve quantum coherence while extending the range
of entanglement distribution. We further define the IN as the composite architecture in which
two distant MNs are connected via a backbone, enabling quantum communication between them.

Throughout this paper, we use the terms entanglement and link interchangeably to denote
an entangled quantum state shared between two nodes. Furthermore, we model entanglement
generation in the IN as a single-shot process: once a border node performs an entanglement swap,
it remains idle and does not initiate further generation until the ongoing end-to-end entanglement
generation process is completed. We refer to a complete trial to establish an end-to-end link as a
round, while individual trials for elementary link generation are termed as attempts. Under this
framework, we analyse the performance of this architecture in a platform-agnostic manner, where
the network is fully characterised by key hardware parameters. In particular, for an MN, the ex-
pected teleportation fidelity and corresponding rate are primarily determined by three parameters:
the elementary link generation probability between end nodes pm′ , the memory coherence time of
the end nodes tcoh, and the fidelity of a freshly generated link fm′ . Here, we assume a symmetric
architecture where the two MNs are identical, end nodes are equidistant from the metropolitan
hub, and border nodes have the same properties as end nodes. Thus, the performance of the IN is
governed by five key hardware parameters: the entanglement-generation probability between an
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Definitions
⌊x⌋ max{n ∈ N : n ≤ x} for x ∈ R
⌈x⌉ min{n ∈ N : n ≥ x} for x ∈ R
m∗ tb/gcd(tm, tb)

Parameters
p0m base efficiency, i.e., the success probability of an entanglement generation attempt

between two end nodes (or an end and border node) at zero separation
dm′ distance between an end node and a nearby metropolitan hub
pm′ success probability of an entanglement generation attempt between two end nodes

in an MN, i.e., pm′ =p0m10
−2αdm′/10; see (4)

pm success probability of an entanglement generation attempt between an end node
and a neighbouring border node, i.e., pm=p0m10

−αdm′/10; see (7)
tm′ duration of an entanglement generation attempt between two end nodes in an

MN
tm duration of an entanglement generation attempt between an end node and a

neighbouring border node
tprep (constant) average duration of a photon generation from an end node or border

node
fm′ fidelity of a freshly generated entangled link between two end nodes in an MN,

fm′ = (1 + 3wm′)/4, where wm′ is the corresponding Werner parameter
fm fidelity of a freshly generated entangled link between an end and a neighbouring

border node, fm = (1+3wm)/4 where wm is the corresponding Werner parameter
pb success probability of an entanglement generation attempt in the backbone
tb (constant) duration of an entanglement generation attempt in the backbone
fb fidelity of a freshly generated entangled link in the backbone, equals (1 + 3wb)/4

where wb is the corresponding Werner parameter
tcoh memory coherence time of an end or border node
tcut cut-off time, i.e., the maximum allowable time between the earliest and latest

generated entangled links
tmsg communication time between an end node and the farthest border node

Variables
M1 number of attempts until successful entanglement generation between an end

node in MN 1 and neighbouring border node, M1 ∼ Geo(pm)

X1 time until successful entanglement generation between an end node in MN 1 and
neighbouring border node, i.e., X1 = tmM1

M2 number of attempts until successful entanglement generation between an end
node in MN 2 and neighbouring border node, M2 ∼ Geo(pm)

X2 time until successful entanglement generation between an end node in MN 2 and
neighbouring border node, i.e., X2 = tmM2

Mb number of attempts until successful entanglement generation in the backbone,
Mb ∼ Geo(pb)

Xb time until successful entanglement generation in the backbone, i.e., Xb = tbMb

Table 1: List of notations.
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end node and a border node pm, the memory coherence time of nodes tcoh, the fidelity of a freshly
generated link between an end and a border node fm, entanglement-generation probability in the
backbone pb, and the fidelity of a freshly generated link in backbone fb. The definitions of all
parameters are summarised in Tab. 1. Note that while we focus on this symmetric setting for
clarity, the framework naturally extends to more general asymmetric networks with heterogeneous
nodes and link distances, at the cost of introducing additional parameters. Throughout the
analysis, we assume time is slotted and derive all performance metrics accordingly.

We now state the assumptions necessary to model the processes that influence teleportation
in the intercity network. This helps us derive the performance metrics, i.e., the expected fidelity
of teleportation and corresponding rate.
A1 Entangled state description: We model all entangled links in the MN and backbone as

Werner states [78]:

ρ = w |Φ+⟩ ⟨Φ+|+ (1− w)
I4
4
, (1)

where |Φ+⟩=(|00⟩+|11⟩)/
√
2 is a maximally entangled Bell state, w ∈ [0, 1] is the

corresponding Werner parameter, and I4 is the 4 × 4 identity matrix. The fidelity of ρ
with respect to |Φ+⟩ can be seen as (1 + 3w)/4.
While physically realised remote entangled states are generally not of the Werner form [55,60],
we model link-level entanglements as Werner states due to the following reasons. First,
when two Werner states are swapped, the resulting state is also a Werner state with the
corresponding Werner parameter given by the product of those of the initial states [79],
making analysis easier. Further, any bipartite state can be transformed into a Werner state
by twirling, i.e., by applying transformations uniformly at random from a set of operations
that involve identical rotations on each qubit [80].

A2 Noise in memory: During entanglement generation across multiple links or in the presence
of classical communication delays, the qubits stored in the memory undergo decoherence.
We model this noise as a depolarising channel acting on the stored qubit. Specifically, the
evolution of a quantum state ρA undergoing a depolarising channel Et over a storage time t
in memory A is given by

Et(ρA) = e−t/tcohρA +
(
1− e−t/tcoh

) I2
2
, (2)

where tcoh denotes the memory coherence time. For a Werner state ρAB which has maximally
mixed marginals, when both qubits undergo depolarising noise for a duration t, the resulting
state is given by

Et ⊗ Et(ρAB) = e−2t/tcohρAB +
(
1− e−2t/tcoh

) I4
4
. (3)

It is worth noting that in certain platforms, such as trapped-ion systems, memory noise can
be described more accurately by a correlated dephasing process with a Gaussian temporal
profile characterised by the coherence time [16]. In contrast, we model the memory noise as
an exponential depolarising channel as defined in (2). The choice is primamily motivated by
analytical tractability and platform independence. Specifically, depolarising noise preserves
the Werner form of states (1), thereby simplifying the analysis [34]. Moreover, while the
depolarising channel does not accurately capture the correlated and non-Markovian nature of
Gaussian dephasing, it provides a convenient and broadly comparable benchmark that facili-
tates general conclusions across architectures. A more detailed investigation of how correlated
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Gaussian dephasing influences network performance would be valuable but lies beyond the
scope of this work.

A3 Entanglement generation between end nodes in a metropolitan network: We adopt
the double-click HEG protocol [81] in our model. Specifically, to entangle two end nodes in an
MN, e.g., P1 and P2 in MN 1 (Fig. 1), both nodes first generate matter-photon entanglement.
Photons from both nodes then travel to the midpoint metropolitan hub, where a photonic
BSM is performed. The BSM succeeds with a certain probability, and the result travels back
to both end nodes, heralding the signal whether entanglement is successfully generated. We
further assume that entanglement generation is attempted at fixed intervals defined as the cy-
cle time. The cycle time and success probability depend on the fibre length between the nodes.
We denote the distance between an end node and its nearest hub as dm′ , such that the fibre
length between two end nodes in an MN is given by 2dm′ . The entanglement-generation
probability is attenuated by fibre loss and is modelled as an exponential factor η(·) [50].
Consequently, the entanglement-generation probability between two nodes is given by:

pm′ = p0m η(2dm′) = p0m10
−2αdm′/10 , (4)

where α= 0.2 km−1 is the attenuation coefficient [59] for typical telecommunication optical
fibres in the optical wavelength range around 1550 nm and p0m, named base efficiency, cap-
tures all distance-independent factors, including photon source brightness, coupling losses,
and visibility.
To derive the cycle time, i.e., the time for each entanglement generation attempt between
the end nodes, we observe that the photon propagation time from an end node to the hub
and the heralding signal propagation time from the hub to the end node are each given by
tclass
m = dm′/c, where c is the speed of light in fibre. To account for delays apart from the

propagation times, we introduce tprep as the average duration of all local (i.e., node-level)
experimental overheads, including photon generation attempts. This can, for example, rep-
resent intrinsic delays between entanglement generation attempts in trapped-ion systems,
which arise from necessary procedures such as laser excitation, qubit initialisation, cooling,
optical pumping, and system control latencies [16]. Since the photon generation attempts at
the end nodes are synchronised, the cycle time is given by

tm′ = tprep + 2tclass
m . (5)

Note that we express the terms tm′ , tprep, and tclass
m in units chosen such that their numerical

values correspond to integers. Finally, in our discrete-time analysis, the number of cycles M ′

to successfully establish a link is geometrically distributed:

M ′ ∼ Geo(pm′) , (6)

whereas a freshly generated link is assumed to be in the Werner form (1) with fidelity fm′

and corresponding Werner parameter wm′ such that fm’ = (1+3wm′)/4 is the fidelity. Note
that imperfections such as reduced two-photon interference visibility, detector inefficiencies,
or dark counts contribute to noise and consequently lower the fidelity. We do not model these
effects explicitly and instead incorporate them into the effective fidelity fm’. This approach
similarly applies to the assumptions outlined in A4–A5.

A4 Entanglement generation between an end node and a neighbouring border node:
Similar to A3, we adopt a discrete-time model for entanglement generation, now between
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an end node and a neighbouring border node, e.g., between P1 and B1. Since B1 is located
right next to the hub H1, only the photon from P1 traverses the distance dm′ to H1, while the
photon from B1 has negligible travel time. Since the border nodes are assumed to have the
same properties as the end nodes, the entanglement-generation probability between an end
node and a border node can be obtained as

pm = p0mη(dm′) = p0m10
−αdm′/10 . (7)

Furthermore, the photon travel time from an end node to the hub and the heralded signal
propagation time from the hub to the end node are each given by tclass

m = dm′/c. In com-
parison to this, the duration for both the photon from the border node to the hub and the
return heralding signal from the hub to the border node is negligible. For properly synchro-
nised entanglement generation attempts, considering that the average duration of all local
experimental overheads is as in A3, the cycle time is given by

tm = tprep + 2tclass
m . (8)

Note that the quantities tm, tprep, and tclass
m are expressed in units chosen such that their

numerical values are integers. Finally, in an entanglement generation attempt, the number
of trials Mi required to establish an entangled link i follows a geometric distribution:

Mi ∼ Geo(pm) , i ∈ {1, 2} . (9)

Once an attempt succeeds, we assume that the generated link is of the Werner form (1) with
fidelity fm and corresponding Werner parameter wm such that fm=(1+3wm)/4.

A5 Entanglement generation in the backbone: We model entanglement generation in the
backbone as a monolithic process, where each attempt takes a fixed duration tb and succeeds
with probability pb. This abstraction captures the behaviour of quantum systems that can
store spin qubits in memory, such as trapped ions, colour centres, as well as systems capable
of storing photonic qubits in memory for a finite time window, such as atomic ensemble-based
memories. Thus, the number of attempts Mb required for successful entanglement generation
in the backbone and the corresponding generation time Xb are given by

Mb ∼ Geo(pb) , Xb := tbMb , (10)

and the resulting entanglement generation rate is

Rb = 1/E(Xb) = pb/tb . (11)

Since we consider that the border nodes share the same properties as the end nodes, we again
assign tprep as the average duration of a single photon generation attempt at a border node, in-
cluding local experimental delays (see A3). Thus, we define the cycle time tb as the sum of the
time it takes to create a single photon from the border node, i.e., tprep, added with the one-way
classical communication time between the two border nodes across the backbone tclass

b , i.e.,

tb = tprep + tclass
b . (12)

For evaluation, we use an estimate of the entanglement generation rate in the backbone from a
model of trapped-ion nodes connected via repeaters composed of ensemble-based memory [27].
Thus, we can obtain the estimate for pb by using (11) and (12). Note that the quantities tb,
tprep, and tclass

b are expressed in units chosen such that their numerical values are integers.
We also assume that the entangled link produced in the backbone can be transferred to
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Figure 2: Classical communication time between nodes in an intercity quantum network.

the border node memories without loss. Consequently, the resulting link between the bor-
der nodes can also be described by a Werner state (1) with a Werner parameter wb and
corresponding fidelity fb such that fb=(1+3wb)/4.

A6 Entanglement swapping: End-to-end entanglement across the IN is created in the fol-
lowing steps: first, entangled links between end and border nodes and in the backbone are
created in parallel, which we refer to as elementary links. We adopt the swap-ASAP pol-
icy [45], i.e., as soon as a border node holds entangled links on both sides, it performs an
entanglement swap [46]. Two such swaps on two border nodes complete the creation of an
end-to-end entanglement in the IN. We assume this swap is realised deterministically, since we
assume that the border nodes can implement swap using quantum gates and measurements
on the qubits in memory. Furthermore, we assume that the swap process is noiseless. This
is justified in the context of long-range quantum teleportation, where qubit decoherence due
to waiting times during remote entanglement generation is the dominant source of noise.

A7 Classical communication time between nodes: At the beginning of each end-to-end
entanglement generation round, all participating nodes in the network are synchronised and
prepared to initiate entanglement generation with their immediate neighbours. In an elemen-
tary link generation attempt, whether between adjacent end nodes or between an end node
and a border node, a BSM is performed on the incoming photons at the hub. Based on the
outcome, a classical heralding signal is issued to both nodes to indicate the success or failure
of the attempt. Similarly, upon completion of the final swap, a classical message is sent to
both end nodes, confirming successful end-to-end entanglement generation. Since the border
node is located right next to the metropolitan hub, the time to send a message from a border
node to a neighbouring end node is tclass

m . Denoting by tclass
b the time for propagation of a

message across the backbone A5, the total communication delay associated with the final
notification is given by

tmsg = tclass
m + tclass

b . (13)

This communication time is shown in Fig. 2. Consequently, the communication time across
the IN between two end nodes belonging to different metropolitan networks, e.g., P1 and P3

(see Fig. 2), is given by
tclass
int = 2tclass

m + tclass
b . (14)

A8 Cut-off time: Due to the probabilistic nature of elementary link generation, links that
are generated earlier must wait until a neighbouring link is formed to start entanglement
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swapping. During this period, links decay in the memory, which degrades the overall fidelity
of the final link. To mitigate the effects of decoherence, a common strategy is to employ a cut-
off mechanism [53] where old degraded links are discarded and replaced with freshly prepared
links. In our model for single-shot entanglement generation across the intercity network, we
implement this strategy as follows: initiate entanglement generation trials by simultaneously
starting generation attempts across all elementary links. A timer activates upon the successful
establishment of the first link. If the remaining links are established within a predetermined
cut-off time tcut, we perform entanglement swaps between adjacent links as they become
available, ultimately yielding an end-to-end link after the final swap. Conversely, if all
required links are not created within tcut, all active links are discarded, and the entanglement
generation process restarts across the network. This entire approach is commonly referred to
as a global cut-off strategy in literature, e.g. [34]. As mentioned earlier, we define a round as
a whole trial to establish an end-to-end link, composed of multiple attempts for elementary
link generation. A round is considered successful if the time interval between the earliest and
latest generated elementary links remains below a specified cut-off time.
While a lower cut-off time tcut improves the fidelity of the end-to-end link by reducing the
storage time of qubits, it leads to a reduction in the corresponding entanglement generation
rate, as more links are discarded. Following [39], we vary tcut within the range

tcut/tcoh ∈ [0.01, 1] , (15)

where tcoh denotes the memory coherence time. Moreover, the cut-off time must be suffi-
ciently large to accommodate both the time required for entanglement generation attempts
on individual links (tm, tb) and the classical communication delays (tmsg). In this work, time
is treated as a discrete variable, taking values in the set of natural numbers. Thus, we obtain
the following range for the cut-off time:

tcut ∈ (max {tm, tb, tmsg, 0.01 tcoh} , tcoh] ∩ N =: Tcut . (16)

Note that our analysis in Sec. 5.1 only requires the lower bound of tcut, but not the upper
bound. Also, cut-off times exclusively apply to HEG between end nodes involving multiple
links and the data qubits are never discarded.
Note that, as per our cut-off strategy for single-shot entanglement generation in the intercity
network, the decision to restart is determined independently at each link based on its genera-
tion attempt. However, it is possible to enhance the end-to-end entanglement generation rate
by adopting more flexible cut-off strategies, for instance, one may discard and restart only
those links whose generation time exceeds tcut, while retaining other successfully generated
links. This process continues until all three links are generated within a tcut time window.
Analysing this cut-off policy is more involved and is left as future work.

A9 Data qubit preparation, local gate operation, and qubit measurement: Although
the time scales associated with qubit initialisation, gate operations, and measurements vary
across different physical platforms, it is orders of magnitude shorter than the entanglement
generation times and classical message propagation times in networks where nodes are sep-
arated by hundreds of kilometres. For example, durations for local operations such as qubit
preparation, gate operation, and measurement in trapped-ion systems typically lie in the
range of hundreds of nanoseconds to a few microseconds [39,82]. For colour centres, these op-
erations can range from a few nanoseconds to a few microseconds [20,47,83–85]. In contrast,
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classical communication between spatially separated nodes over hundreds of kilometres incurs
delays on the order of milliseconds, constrained by the speed of light in optical fibre (approx.
5µs/km). Furthermore, entanglement generation between distant nodes typically requires
multiple attempts due to the probabilistic photon generation process, photon loss through
fibre, detector inefficiencies, and the probabilistic nature of heralding, which significantly
increases the overall time required for entanglement generation. Due to this pronounced sep-
aration of time scales, we assume that the local operations are instantaneous relative to the
long-distance entanglement generation time. Note that in the HEG process, we account for
the local experimental overheads separately in A3 and A4 via (5) and (8), which can range
from several hundred microseconds to milliseconds per attempt [16].

Equipped with these assumptions, we now formally describe Q1–Q4.

4. Objectives and Methods

In this section, we present the methodology for determining the necessary requirements to
achieve teleportation with a desired level of quality in the network shown in Fig. 1. Specifically,
we address Q1-Q4. We observe that the teleportation rate and the expected fidelities of ER and
QR teleportation in the MNs and IN depend on the hardware parameters as shown in Tab. 2.
In addition, we include the non-hardware parameter cut-off time tcut (in parentheses) to show its
influence on the performance-relevant metrics. Note that under our assumption of instantaneous

Table 2: Description of quantities of interest and the influencing parameters.

Quantities of interest Influencing parameters
Metropolitan network (MN):
Teleportation rate Rm p0m
Expected ER teleportation fidelity E(FER

m ) p0m, tcoh, fm′

Expected QR teleportation fidelity E(FQR
m ) p0m, tcoh, fm′

Intercity network (IN):
Teleportation rate Rint p0m, pb, (tcut)
Expected ER teleportation fidelity E(FER

int ) p0m, tcoh, fm, pb, fb, (tcut)
Expected QR teleportation fidelity E(FQR

int ) p0m, tcoh, fm, pb, fb, (tcut)

local operations, the teleportation rates are identical for both teleportation types in the MN and
IN. Our primary objective is to identify the combination of hardware parameters required to
achieve the target teleportation fidelity 2/3 in the MN and IN. Within the feasible parameter
space, we seek to determine the minimal hardware improvement required over the state-of-the-art
parameters, with respect to the cost function introduced in the next section.

4.1. Optimisation Framework and Hardware Cost

We recall from Q1–Q4 that our first objective is to investigate whether the state-of-the-
art hardware can achieve the target teleportation fidelity ftarget := 2/3. To that end, we
characterise the feasible parameter range that helps attain this threshold. Let λ⃗ denote the
generic hardware parameter vector determining the expected fidelity of teleportation E(F ), where
F ∈ {FER

m , FQR
m , FER

int , F
QR
int }; see Tab. 2 for the explicit forms of λ⃗ and F . In addition, Tab. 2 shows

the dependence of F on the optional non-hardware parameter tcut. Denoting the feasible hardware
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parameter space as Λ and the range of tcut as Tcut, the desired range of hardware parameters can
be written as

Λ+ := {λ⃗ ∈ Λ: max
tcut∈Tcut

E
(
F (λ⃗ | tcut)

)
≥ ftarget} , where Λ := ×m

i=1[=λ
(i), λ

(i)
] , (17)

with
=
λ(i), λ(i), andm respectively denoting the lowest possible value of the ith hardware parameter,

its optimistic value, and the total number of hardware parameters influencing the expected
teleportation fidelity E(F ). The optimistic values represent projections by experimental groups
for achievable performance in the near future; see Sec. 4.3. Since these projections are based on
current experimental status and possible room for improvements, it remains uncertain a priori
whether these optimistic values are sufficient to achieve the target teleportation performance.
Therefore, we impose λ(i) as an upper bound in (17) to identify, if it exists, the most accessible
point in the parameter space that meets the required criteria. Note that the vertical bar preceding
tcut in the expression for F in (17) highlights that it is a non-hardware parameter, relevant only to
teleportation in the intercity network. Furthermore, the specific form of Tcut is provided in (16).
Furthermore, we define the baseline parameters, denoted as λ(i), to represent the current state-
of-the-art values such that λ(i) ∈ [

=
λ(i), λ

(i)
], for all i. In our evaluation, we specifically adopt

the baseline and optimistic parameter sets corresponding to experiments with trapped-ion and
ensemble-based memories; see Sec. 4.3 for more details.

It is evident that if the state-of-the-art (i.e., baseline) values of the hardware parameter lie
in the desired range Λ+, which achieves teleportation with target fidelity, no further hardware
improvement is required for attaining our objective. Otherwise, we aim to find the minimal
hardware improvements necessary, in the following space

Λ++ := {λ⃗ ∈ Λbase : max
tcut∈Tcut

E
(
F (λ⃗ | tcut)

)
≥ ftarget} , where Λbase := ×m

i=1[λ
(i), λ

(i)
] . (18)

Then, the minimality of hardware improvement is defined in terms of the cost function [38,39,50]
denoted h, which leads to the set of resulting hardware parameter values as Λ′

∗. That is,

Λ′
∗ := {λ⃗ ∈ Λ++ : h(λ⃗, λ⃗) = min

λ⃗′∈Λ++

h(λ⃗′, λ⃗)} , where h(λ⃗, λ⃗) :=
m∑
i=1

IF(λ(i), λ(i)) , (19)

IF(λ(i), λ(i)) :=
ln
(
p
(i)
NI(λ

(i))
)

ln
(
p
(i)
NI(λ

(i))
) , (20)

and the functions p
(i)
NI , i ∈ [m] denote the probability of no-imperfection, a metric [49] that

maps hardware parameters with varying ranges to [0, 1]. In this mapping, the functional value 1

corresponds to ideal performance such as infinite coherence time, perfect link fidelity, and 100%

base efficiency. We provide the specific forms of pNIs in Tab. 3. Moreover, to quantify the degree
of improvement required for each parameter relative to its baseline, we define the improvement
factor (IF) as in (20) and define the hardware cost h as the sum of the improvement factors
across all parameters. It is important to note that the hardware cost computed through this
methodology serves as a measure of the technical difficulty in enhancing hardware parameters to
the specified levels, rather than representing any financial costs.

Observe that the definition of the set Λ′
∗ in (19) involves solving a constrained optimisation

problem, where the constraint λ⃗′ ∈ Λ++ is imposed to ensure that the target performance in (17) is
met. Moreover, restricting the search space to Λ++ rather than Λ+ ensures that the optimisation
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process seeks only parameter improvements, preventing any parameter from being reduced below
its baseline value. We adopt the approach called scalarisation [86, 87] to convert this into an
unconstrained optimisation problem, which is numerically convenient to solve. Specifically, we
add the constraint as a large penalty term to the objective function h, yielding a new objective
function c, which, due to the presence of the penalty term, may also depend on the non-hardware
parameter tcut:

c(λ⃗, λ⃗, F | tcut) := ω1

(
1+
(
ftarget−E

(
F (λ⃗ | tcut)

))2)
1E(F (λ⃗|tcut))<ftarget

+ω2h(λ⃗, λ⃗) . (21)

As mentioned, the indicator function 1E(F (λ⃗)|tcut)<ftarget
introduces a penalty when the target fidelity

is not achieved. Further, the weights ω1 and ω2 control the relative importance of satisfying the
fidelity constraint versus minimising hardware cost. By imposing ω1 ≫ ω2, we ensure that the
optimiser prioritises solutions satisfying F (λ⃗ | tcut) ≥ ftarget. In our implementation, we set
w1=10100 and w2=1 following [50] since the precise value of the total cost is irrelevant when the
fidelity constraint is violated.

With the updated objective function c, we derive the set of desired hardware parameter values
Λ∗ as below:

Λ∗ := {λ⃗ ∈ Λbase : c(λ⃗, λ⃗, F | tcut) = min
λ⃗′∈Λbase, t

′
cut∈Tcut

c(λ⃗′, λ⃗, F | t′cut)} . (22)

Finally, we use the optimisation heuristic from [88], which outputs a point λ⃗∗ ∈ Λ∗ that is
practically equivalent to any other point in Λ∗ considering our objective. We now address the
individual questions in Q1–Q4.

4.2. Reformulation of Q1

Recall that in Q1, we consider teleportation in an MN, i.e., between nodes P1 and P2 (resp. P3

and P4) via the metropolitan hub H1 (resp. H2). To identify the desired parameter space for the
MN, we first introduce the following shorthand notations for the relevant hardware parameters
and their ranges:

λ⃗m′ := (p0m, tcoh, fm′) , ⃗
=
λm′ := (

=
p0m,=tcoh,

=
fm′) , λ⃗m′ := (p0

m
, tcoh, fm′) , λ⃗m′ := (p0m, tcoh, fm′) , (23)

Λm′ := [
=
p0m, p

0
m]× [

=
tcoh, tcoh]× [

=
fm′ , fm′ ] , Λm′,base := [p0

m
, p0m]× [tcoh, tcoh]× [f

m′ , fm′ ] . (24)

Recall that the parameters with lower bars denote baseline values, and those with upper bars
denote optimistic values.

For the ER case, we denote the desired parameter range enabling teleportation in the MN
with the threshold fidelity as

ΛER
1+ := {λ⃗m′ ∈ Λm′ : E

(
FER

m (λ⃗m′)
)
≥ ftarget} . (25)

In case the baseline values lie outside this desired region, we proceed to find the set of points that
minimises the hardware improvement cost as

ΛER
1∗ :=

{
λ⃗m′ ∈ Λm′,base : c(λ⃗m′ , λ⃗m′ , FER

m ) = min
λ⃗′
m′∈Λm′,base

c(λ⃗′m′ , λ⃗m′ , FER
m )
}
. (26)

Depending on the cost function landscape, there could be multiple points in the parameter
space satisfying the required criteria. However, as discussed earlier, our numerical optimisation
algorithm yields a specific solution λ⃗ER

1∗ ∈ ΛER
1∗ , which is sufficient from a practical point of view,

since all such points are equivalent with respect to minimising the cost function (21). Moreover,



17

for better visualisation, we plot the following surface

Λ̃ER
1+ := {(p0m, tcoh, fm′) ∈ ΛER

1+ : fm′ = min
(p0m,tcoh,z)∈ΛER

1+

z} , (27)

instead of the the desired parameter range ΛER
1+ . Observe that Λ̃ER

1+ denotes the set requiring
the minimum link fidelity fm among the points in ΛER

1+ . Also, for each point on this surface, we
calculate the corresponding teleportation rate as:

RER
1 (λ⃗m′) := Rm(p

0
m) , λ⃗m′ ∈ Λ̃ER

1+ . (28)

For the qubit-ready (QR) case, the desired parameter space, the surface, set of optimal points,
and the corresponding rate for the points on this surface are, respectively, given by

ΛQR
1+ := {λ⃗m′ ∈ Λm′ : E

(
FQR

m (λ⃗m′)
)
≥ ftarget} , (29)

Λ̃QR
1+ := {(p0m, tcoh, fm′) ∈ ΛQR

1+ : fm′ = min
(p0m,tcoh,z)∈ΛQR

1+

z} , (30)

ΛQR
1∗ :=

{
λ⃗m′ ∈ Λm′,base : c(λ⃗m′ , λ⃗m′ , FQR

m ) = min
λ⃗′
m′∈Λm′,base

c(λ⃗′m′ , λ⃗m′ , FQR
m )

}
, (31)

RQR
1 (λ⃗m′) := Rm(p

0
m) , λ⃗m′ ∈ Λ̃QR

1+ . (32)

The reformulations of Q2–Q4 are carried out in a similar way, and we define them
formally in Appendix B. For example, in the reformulation of Q2 for ER teleportation, the
desired parameter space, surface, set of optimal points, and the corresponding rate are denoted
respectively as ΛER

2+ , Λ̃ER
2+ , ΛER

2∗ , and RER
2 ; see see (B.5)–(B.9).

For evaluations, we need to compute the sets (29)–(31) and their counterparts for Q2–Q4
provided in Appendix B . To that end, we first express the performance metrics, i.e., the rate
and fidelity of teleportation as mentioned in Tab. 2, in terms of the hardware parameters and the
cut-off, where applicable. The derivations for the metrics for intercity teleportation are provided
in Sec. 5, while the corresponding expressions for teleportation within an MN are provided in Ap-
pendix A.2 and Appendix A.3. In the next section, we outline the procedure used to arrive at the
baseline and optimistic values of the hardware parameters, considering trapped-ion nodes for the
MNs and ensemble-based memories for the repeater chain in the backbone.

4.3. Baseline and Optimistic Parameter Values

We take the parameter values for the MN components corresponding to the quantum
communication experiments with trapped ions. Our choice is motivated by the popularity of these
physical systems in the context of quantum networking primitives. Empirical demonstrations of
the efficacy of such systems include long-lived quantum memories [16, 89], remote entanglement
generation [14, 15, 17], the ability to perform high-fidelity single- and two-qubit quantum
gates [90–92], and entanglement swapping [14]. Note that we do not assume all parameters
to have been demonstrated in the same experimental setup.

The baseline parameter values listed in Tab. 3 reflect the state-of-the-art experimental
capabilities, while their optimistic counterparts represent projected near-term improvements.
Recent experimental work [14] has demonstrated entanglement generation over a trapped-ion
network with average fidelities fm′ up to 0.88 relative to a maximally entangled state. Furthermore,
coherence times (tcoh) as long as 62 ms have been achieved [16]. Our baseline for the base efficiency
p0m for ion-ion entanglement generation, i.e., without considering the fibre loss, is 5.95× 10−4. We
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provide a comprehensive derivation of p0m from experimental parameters in Appendix A.1 and
obtain the baseline value. Following the supplementary material of [16], we take tprep as 175µs.

To obtain the optimistic values of these parameters, we incorporate anticipated near-term
hardware advancements as indicated by experimental physicists at the Institute for Quantum
Optics and Quantum Information, University of Innsbruck [93]. These improvements include
narrowing the photon-detection coincidence window and enhancing photon detectors to increase
ion–ion entanglement fidelity. We expect such advances to yield a metropolitan link fidelity fm′ of
0.95. Moreover, employing decoherence-free subspaces [60, 94] in combination with sympathetic
cooling techniques [95, 96], or using alternative ion isotopes with inherently longer coherence
times [97], is expected to extend the memory coherence time tcoh to 4 seconds. With respect to
the base efficiency p0m, the ion-photon entanglement-generation probability can be enhanced by
employing smaller cavities to achieve better coupling with the trapped ions, using improved photon
detectors, and frequency conversion techniques for the emitted photons. These advancements yield
an optimistic estimate of p0m = 1.43×10−2. We provide the corresponding derivation in Appendix
A.1. Note that we do not know a priori whether the optimistic parameter values are sufficient
to satisfy our requirements. While these values are based on projections of current experimental
capabilities and plausible future improvements, further improvements beyond these estimates may
be possible. In this work, however, we do not consider such potential advancements and instead
assess whether the optimistic parameters are adequate.

The backbone network, which spans a distance of 450 km, has not yet been experimentally
realised. However, multimode quantum memories based on atomic ensembles have been shown to
enable heralded entanglement generation when integrated with spontaneous parametric down
conversion sources [55, 98]. Motivated by these advances and the potential for long storage
times [99, 100], we base our parameter estimates on theoretical models of hybrid architectures
that combine trapped-ion nodes with atomic ensemble-based repeaters [27, 28]. For the baseline
backbone parameters, we adopt conservative estimates consistent with current experimental
capabilities. Using the formalism of [27], this yields an entanglement generation rate of
approximately 1/1610.15 sec−1 at a target fidelity fb=0.6 ‡. Following the supplementary material
of [16], we take tprep to be 175µs. Thus, using (11) and (12), we obtain the baseline of backbone
entanglement-generation probability pb=Rb × tb=1.51× 10−6, where we used tclass

b =450/c, and
c=200,000 km/s is the speed of light in optical fibre.

To derive the corresponding optimistic values, we follow [27] to arrive at an entanglement
generation rate Rb of approximately 1/0.58 sec−1 with a target entanglement fidelity fb=0.9. This
gives the optimistic backbone entanglement-generation probability pb=Rb × tb=4.18× 10−3.
We emphasise that although the parameter values for our evaluations are based on quantum-
networking experiments involving trapped ions and atomic ensemble-based repeaters, our
modelling framework remains hardware agnostic.

5. Derivation of the Teleportation Rate and Expected Fidelity in the Intercity
Network

To answer Q2–Q4, we now derive the rate and fidelity of teleportation in the IN, which are
then plugged into the formulations of the desired sets in Appendix B.1-Appendix B.3.

‡ Based on the two-single-click protocol of [27,28], and values obtained using the corresponding code repository.
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Table 3: Mapping of physical parameters to corresponding no-imperfection probabilities (pNI),
which re-scale physical parameter values to the interval [0, 1]. Baseline values reflect the
state-of-the-art experimental capabilities, and optimistic values represent projected near-term
improvements. We vary parameters over this range to evaluate the hardware requirements to
perform teleportation. The metropolitan and backbone parameter values are representative of
trapped-ion-based networks and ensemble-based quantum repeater chains, respectively.

Parameter λ(i) pNI(λ
(i)) Baseline λ(i) Optimistic λ

(i)

Metropolitan base efficiency p0m p0m 5.95× 10−4 1.43× 10−2

(see Appendix A.1) (see Appendix A.1)
Coherence time tcoh e−1/tcoh 62 ms [16] 4 s [93]
Metropolitan ent. fidelity fm

1
3
(4fm − 1) 0.88 [14] 0.95 [93]

Backbone ent. gen. probability pb pb 1.51× 10−6 4.18× 10−3 [27]
Backbone ent. fidelity fb

1
3
(4fb − 1) 0.60 0.90 [27]

5.1. Derivation of Teleportation Rate in the Intercity Network

In our model of the IN, the rate at which a qubit can be teleported between end nodes belonging
to different MNs is determined by the time required to establish end-to-end entanglement and
subsequent teleportation time. Due to A9, the teleportation time includes the transmission time
of the Pauli correction message from the sender node to the receiver, which is given by tclass

int ;
see (14). Further, let Xe2e be the random variable representing the time to establish an end-
to-end entanglement successfully. Since we assume that data qubit preparation is instantaneous
(see A9), the total time required in both ER and QR teleportation is tclass

int +Xe2e. Thus, the rate
of intercity teleportation is given by

(Teleportation rate) Rint =
1

E(tclass
int +Xe2e)

=
1

tclass
int +E(Xe2e)

. (33)

We now focus on the derivation of E(Xe2e). To that end, we introduce certain notations and
rephrase relevant implications from assumptions A1–A9.
R1 Individual link generation times : Recall from A8 that a cut-off time tcut is imposed

to ensure a certain quality of entanglement. We denote by X1, X2, and Xb the duration of
successfully generating entanglement between P1 (or P2) and J1, P3 (or P4) and J2, and J1

and J2, respectively. We further define

Xmax := max{X1, X2, Xb} , Xmin := min{X1, X2, Xb} .

As explained in A8, we consider an end-to-end entanglement generation round to be successful
if and only if all links are produced within a tcut time block where tcut ∈ Tcut; see (16). That
is, we require

Xmax −Xmin < tcut ⇐⇒ Xmax −Xmin ≤ t′cut := tcut − 1. (34)

R2 Auxiliary variables: To denote the success of the i-th end-to-end entanglement generation
round, we introduce a Bernoulli random variable Y (i). That is, Y (i)=1 if end-to-end
entanglement is successfully created during the i-th attempt and Y (i)=0 otherwise. Also,
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we denote by N the number of rounds until successful entanglement generation and by Z(i)

the duration of the i-th round. We also assume

Y (i) IID∼ Y , Z(i) IID∼ Z , (35)

P(Y = 1) = P(Xmax−Xmin < tcut) =: p . (36)

Recall from A6 that entanglement swap in memory always succeeds. However, in a successful
entanglement generation round, after completion of the final swap, a classical message must
be transmitted to both end nodes to signal whether the actual teleportation process can
commence. As mentioned in (13) and illustrated in Fig. 2, the duration required for this
communication is denoted by tmsg. On the other hand, recall from A8 that a round is
considered unsuccessful if the final entangled link (out of three) is not generated within
the cut-off time tcut since the generation of the first elementary link. At time Xmin, a
classical message is sent across nodes to communicate successful entanglement generation in
the relevant link. The message takes at most tmsg time to reach the farthest node. Since we
have tcut ≥ tmsg (see (16)), this allows all nodes to abandon existing elementary link generation
attempts by time Xmin+tcut and restart the round. Thus, the duration of a successful (Y = 1)
and failed (Y = 0) end-to-end entanglement generation round is given by

Z =

Xmax + tmsg, if Y = 1 ,

Xmin + tcut, if Y = 0 .
(37)

R3 Events concerning end-to-end link generation rounds: We define the following events
to facilitate our analysis:

Ai :={ω :Xmax(ω)=Xi(ω)} , AiAj :=Ai ∩ Aj , A1A2Ab :=
⋂

k∈{1,2,b}

Ak , i, j ∈ {1, 2, b} . (38)

Further, the following events correspond to Y (i) = 1, i.e., success in the i-th round:

A+
i :={ω :Xmax(ω)=Xi(ω), Xmax −Xmin ≤ t′cut} ;

A+
ij :={ω :Xmax(ω)=Xi(ω), Xmin(ω)=Xj(ω), Xmax −Xmin ≤ t′cut} ;

A+
i A

+
j :=A

+
i ∩ A+

j , i, j ∈ {1, 2, b} ; A+
1 A

+
2 A

+
b :=

⋂
k∈{1,2,b}

A+
k .

(39)

Characterisation of these events in terms of M1,M2 and Mb is straightforward. For example,
on A+

1 A
+
b , M1,M2 and Mb will assume values of the following form

M1 = km∗, Mb = km∗ tm
tb
, for k ∈ N, m∗=

tb
gcd(tm, tb)

and
⌈
M1−

t′cut

tm

⌉
≤M2 ≤M1. (40)

An exhaustive list of characterisations for the events in (39) is shown in Tab. 4.
For failed rounds (i.e., Y (i)=0), the relevant events are defined as

A−
i := Ai − A+

i , i ∈ {1, 2, b} ;

A−
i A

−
j := A−

i ∩ A−
j , i, j ∈ {1, 2, b} ;

A−
ij := {ω :Xmax(ω)=Xi(ω), Xmin(ω)=Xj(ω), Xmax−Xmin ≥ tcut} ;

A−
ijA

−
kl :=A

−
ij ∩ A−

kl , i, j, k, l ∈ {1, 2, b} .

(41)

Characterisation of these events in terms of M1,M2, and Mb is given in Tab. 5.
R1–R3 help us derive E(Xe2e), which we describe in the following theorem.
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Table 4: Reformulation of the sets from (39). Here, i, i′∈{1, 2}, and i′=(i+1) mod 2.

Set Definition Interpretation in terms of M1,M2,Mb

A+
i ,

i∈{1, 2}
Xi−t′cut ≤ Xi′ ≤ Xi,
Xi−t′cut ≤ Xb ≤ Xi

max(1, ⌈Mi−t′cut/tm⌉)≤Mi′ ≤Mi,
max(1, ⌈(Mitm−t′cut)/tb⌉)≤Mb≤⌊Mitm/tb⌋,

Mi ≥ ⌈tb/tm⌉

A+
b Xb−t′cut ≤ Xi ≤ Xb

max(1, ⌈(Mbtb−t′cut)/tm⌉)≤Mi≤⌊Mbtb/tm⌋,
Mb ∈ N

A+
1 A

+
2

X1=X2,
X1−t′cut ≤ Xb ≤ X1

max(1, ⌈(M1tm−t′cut)/tb⌉) ≤Mb ≤ ⌊M1tm/tb⌋,
M2 =M1, M1 ≥ ⌈tb/tm⌉

A+
i A

+
b ,

i∈{1, 2}
Xi=Xb,

Xb−t′cut ≤ Xi′ ≤ Xb

⌈Mi−t′cut/tm⌉≤Mi′ ≤Mi,
Mi=km

∗, Mb=km
∗tm/tb for k ∈ N;

see (40)

A+
1 A

+
2 A

+
b X1=X2=Xb

M1tm=M2tm=Mbtb=km
∗tm for k ∈ N;

see (40)

Table 5: Reformulation of the sets from (41). Here, i, i′ ∈ {1, 2}, and i′=(i+1) mod 2.

Set Definition Interpretation in terms of M1,M2,Mb

A−
1 A

−
2

Xb ≤ X1=X2,
Xb ≤ X1−tcut

M1 =M2,
M1 ≥ ⌈(Mbtb+tcut)/tm⌉, Mb ∈ N

A−
i A

−
b

Xi′ ≤ Xi=Xb,
Xi′ ≤ Xi−tcut

Mi = km∗, Mb = km∗tm/tb, for
k ∈ [⌈(Mi′tm+tcut)/(m

∗tm)⌉ ,∞) ∩ N, Mi′ ∈ N;
see (40)

A−
ii′

Xi′ ≤ Xb ≤ Xi,
Xi′ ≤ Xi−tcut

⌈Mi′tm/tb⌉ ≤Mb ≤ ⌊Mitm/tb⌋,
Mi ≥Mi′+⌈tcut/tm⌉, Mi′ ∈ N

A−
ib

Xb ≤ Xi′ ≤ Xi,
Xb ≤ Xi−tcut

⌈Mbtb/tm⌉ ≤Mi′ ≤Mi,
Mi ≥ ⌈(Mbtb+tcut)/tm⌉, Mb ∈ N

A−
ii′A

−
ib

Xi′ =Xb ≤ Xi,
Xi′ ≤ Xi−tcut

Mi ≥Mi′+⌈tcut/tm⌉,
Mi′ =km

∗, Mb=km
∗tm/tb, for k∈N; see (40)

A−
bi

Xi ≤ Xi′ ≤ Xb,
Xi ≤ Xb−tcut

Mi ≤Mi′ ≤ ⌊Mbtb/tm⌋
Mb ≥ ⌈(Mitm+tcut)/tb⌉, Mi ∈ N

A−
b1A

−
b2

X1=X2 ≤ Xb,
X1 ≤ Xb−tcut

M1 =M2,
Mb ≥ ⌈(M1tm+tcut)/tb⌉, M1 ∈ N

Theorem 1. The expected time to successfully establish an end-to-end link is given by

E(Xe2e) =
E (Z1Y=0) + E (Z1Y=1)

p
, where (42)
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E
(
Z1Y=1

)
= 2E

(
Z1A+

1

)
+E
(
Z1A+

b

)
−E
(
Z1A+

1 A+
2

)
−2E

(
Z1A+

1 A+
b

)
+E
(
Z1A+

1 A+
2 A+

b

)
, (43)

E
(
Z1Y=0

)
= 2

(
E
(
Z1A−

12

)
+E
(
Z1A−

1b

)
+E
(
Z1A−

b1

))
−2E

(
Z1A−

12A
−
1b

)
−E
(
Z1A−

b1A
−
b2

)
−E
(
Z1A−

1 A−
2

)
−2E

(
Z1A−

1 A−
b

)
. (44)

Proof. Since N denotes the total number of rounds required for successful end-to-end entangle-
ment generation,

E(Xe2e) = E
( N∑

i=1

Z(i)
)

(45)

(i)
= E

(
E
( N∑

i=1

Z(i) | N
))

(46)

(ii)
=

∞∑
n=1

p(1− p)n−1E
( N∑

i=1

Z(i) | N=n
)

(47)

(iii)
=

∞∑
n=1

p(1− p)n−1
( n−1∑

i=1

E
(
Z(i) | Y (i)=0

)
+ E

(
Z(n) | Y (n)=1

) )
(48)

(iv)
=

∞∑
n=1

p(1− p)n−1
(
(n− 1)E (Z | Y=0) + E (Z | Y=1)

)
(49)

=
(1
p
− 1
)
E (Z | Y =0) + E (Z | Y =1) (50)

(v)
=
(1
p
− 1
)E (Z1Y=0)

P(Y =0)
+

E (Z1Y=1)

P(Y =1)
(51)

=
E (Z1Y=0) + E (Z1Y=1)

p
, (52)

which establishes (42). Here, in (i) and (v), we have used the definition of conditional expectation.
Further, (ii) uses the fact that N ∼ Geo(p), (iii) uses linearity of expectation and (iv) follows
from the fact that Y (i) iid∼Y and Z(i) iid∼Z.

To show (43) and (44), we use the principle of inclusion and exclusion. Recalling the defini-
tions of A+

i ’s and A+
i A

+
j ’s from (39),

E
(
Z1Y=1

)
= E

(
Z1A+

1

)
+E
(
Z1A+

2

)
+E
(
Z1A+

b

)
−E
(
Z1A+

1 A+
2

)
−E
(
Z1A+

1 A+
b

)
−E
(
Z1A+

2 A+
b

)
+E
(
Z1A+

1 A+
2 A+

b

)
(53)

(i)
= 2E

(
Z1A+

1

)
+E
(
Z1A+

b

)
−E
(
Z1A+

1 A+
2

)
−2E

(
Z1A+

1 A+
b

)
+E
(
Z1A+

1 A+
2 A+

b

)
,

where (i) follows from the symmetry of the metropolitan links.
For Y =0, we similarly have

E
(
Z1Y=0

)
= 2E

(
Z1A−

1

)
+E
(
Z1A−

b

)
−E
(
Z1A−

1 A−
2

)
−2E

(
Z1A−

1 A−
b

)
+E
(
Z1A−

1 A−
2 A−

b

)
(54)

(i)
= 2

(
E
(
Z1A−

12

)
+E
(
Z1A−

1b

)
−E
(
Z1A−

12A
−
1b

))
+2E

(
Z1A−

b1

)
−E
(
Z1A−

b1A
−
b2

)
−E
(
Z1A−

1 A−
2

)
−2E

(
Z1A−

1 A−
b

)
.

Note that E
(
Z1A−

1 A−
2 A−

b

)
= 0, as the subset A−

1 A
−
2 A

−
b is empty. In (i), we again use the prin-

ciple of inclusion and exclusion as the events of the form A−
i are determined via Xmax, while
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Z|Y = 0 ∼ Xmin + tcut. Specifically, we have

1A−
1
= 1A−

12
+ 1A−

1b
− 1A−

12A
−
1b
, 1A−

b
= 1A−

b1
+ 1A−

b2
− 1A−

b1A
−
b2
. (55)

Also by symmetry, E
(
Z1A−

b1

)
= E

(
Z1A−

b2

)
. We have thus established (43) and (44).

We calculate the individual terms of (43) in Appendix C.1, which are given by (C.32), (C.39),
(C.44), (C.49), and (C.53). For (44), the calculable expressions of the individual terms are given
in (C.63), (C.69), (C.79), (C.85), (C.90), (C.95), and (C.101). The calculation of the end-to-
end entanglement generation success probability p follows directly from the fidelity calculation.
Hence, we present the derivation in Sec. 5.2. In particular, p= U1(0); see (68). Plugging these
in (43), (44), and (42) and subsequently in (33), we obtain the teleportation rate in the IN. Next,
we derive the expressions for the expected teleportation fidelity.

5.2. Derivation of Expected Teleportation Fidelity in the Intercity Network

In our model of IN, the fidelity of the teleported qubit for ER teleportation depends on (i)
the fidelity of the end-to-end entangled link and (ii) the time taken to transmit the classical
Pauli correction message from the sender node to the receiver tclass

int ; see (14). Furthermore, for
the QR teleportation, since the data qubit decoheres until the end-to-end link generation, the
teleportation fidelity also depends on the time required to generate this link. Hence, we first focus
on the derivation of the expected fidelity of the end-to-end link in the next lemma.

Lemma 1. The expected fidelity of an end-to-end entangled link in the IN is given by

Fe2e =
1 + 3E(we2e)

4
, where E(we2e) =

w2
mwb e

−ktmsg

p
U1(k) , with (56)

U1(k) := E
(
e−kXdiff 1Y=1

)
, k :=

2

tcoh
, and (57)

Xdiff :=

{
Xmax −Xmin, for A+

1 and A+
2 ,

2Xb −X1 −X2, for A+
b .

(58)

Here, wm and wb are the Werner parameters of freshly generated links between an end node and
its neighbouring border node, and between two border nodes across the backbone, respectively.
Furthermore,

U1(v) = 2

(
E
(
e−v (X1−X2)1A+

12

)
+E
(
e−v (X1−Xb)1A+

1b

)
−E
(
e−v (X1−X2)1A+

12A
+
1b

))
+E
(
e−v (2Xb−X1−X2)1A+

b

)
−E
(
e−v (X1−Xb)1A+

1 A+
2

)
−2E

(
e−v (X1−X2)1A+

1 A+
b

)
+E
(
1A+

1 A+
2 A+

b

)
. (59)

Proof. Recall from R1 that X1, X2, and Xb are the duration of successfully generating
entanglement between P1 (or P2) and J1, P3 (or P4) and J2, and J1 and J2, respectively.
Furthermore, recall from A1 that an entanglement swap between two Werner states results in a
Werner state with the corresponding Werner parameter being the product of those of the initial
states. Since decoherence affects the states and the effect depends on the chronological order of
the generation times, the end-to-end link fidelity differs across the events defined in (39) and (41).
We describe the evolution of the Werner parameter for each case in the Tab. 6

Since unsuccessful trials do not influence the fidelity of the final end-to-end entangled link,
we restrict our analysis to the case Y =1. In this case, we use the shorthand Xdiff introduced
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Table 6: Derivation of the Werner parameter of the end-to-end entangled state. In the last
column, we include the constant communication delay tmsg, which accounts for the time required
to transmit the final swap message from border nodes to both end nodes. We set k = 2/tcoh.
Note that due to symmetry of the metropolitan links, the contributions from the events A+

21, A
+
2b,

and A+
b2 are identical to those from A+

12, A
+
1b, and A+

b1, respectively. The final column is precisely
w2

mwbe
−k(Xdiff+tmsg); see (58).

Set Xmin Xmid Xmax End-to-end link

A+
12 link 2: wm

link 2: wme
−k(Xb−X2) link b2: wmwbe

−k(X1−X2)

w2
mwbe

−k(X1−X2)

· e−ktmsg
link b: wb link 1: wm

link b2: wmwbe
−k(Xb−X2) link 1b2: w2

mwbe
−k(X1−X2)

A+
1b link b: wb

link b: wbe
−k(X2−Xb) link b2: wmwbe

−k(X1−Xb)

w2
mwbe

−k(X1−Xb)

· e−ktmsg
link 2: wm link 1: wm

link b2: wmwbe
−k(X2−Xb) link 1b2: w2

mwbe
−k(X1−Xb)

A+
b1 link 1: wm

link 1: wme
−k(X2−X1) link 1: wme

−k(Xb−X1)

w2
mwbe

−k(2Xb−X1−X2)

· e−ktmsg

link 2: wm link 2: wme
−k(Xb−X2)

link b: wb

swap not possible link 1b2: w2
mwbe

−k(2Xb−X1−X2)

in (58) to succinctly express the contribution of different sub-events by

we2e = w2
mwbe

−k(Xdiff+tmsg) , (60)

see Tab. 6 for an explanation. Thus, we obtain the expected Werner parameter of the end-to-end
link as E(we2e) = E(w2

mwbe
−k(Xdiff+tmsg) | Y =1) (61)

= w2
mwbe

−ktmsg E(e−kXdiff | Y =1) (62)

= w2
mwbe

−ktmsg
E(e−kXdiff 1Y=1)

P(Y = 1)
(63)

(36),(57)
=

w2
mwbe

−ktmsg

p
U1(k) ,

and the corresponding expected fidelity is (1 + 3E(we2e))/4, which establishes (56).
To show (59), we use the principle of inclusion and exclusion. Recalling the definitions of A+

i

and A+
ij from (39), we have

U1(v) = E
(
e−vXdiff 1Y=1

)
(64)

= E
(
e−vXdiff1A+

1

)
+E
(
e−vXdiff1A+

2

)
+E
(
e−vXdiff1A+

b

)
−E
(
e−vXdiff1A+

1 A+
2

)
−E
(
e−vXdiff1A+

1 A+
b

)
−E
(
e−vXdiff1A+

2 A+
b

)
+E
(
e−vXdiff1A+

1 A+
2 A+

b

)
(65)

(i)
= 2E

(
e−vXdiff1A+

1

)
+ E

(
e−vXdiff1A+

b

)
− E

(
e−vXdiff1A+

1 A+
2

)
− 2E

(
e−vXdiff1A+

1 A+
b

)
+ E

(
e−vXdiff1A+

1 A+
2 A+

b

)
(66)

(ii)
= 2

(
E
(
e−v (X1−X2)1A+

12

)
+E
(
e−v (X1−Xb)1A+

1b

)
−E
(
e−v (X1−X2)1A+

12A
+
1b

))
+E
(
e−v (2Xb−X1−X2)1A+

b

)
−E
(
e−v (X1−Xb)1A+

1 A+
2

)
−2E

(
e−v (X1−X2)1A+

1 A+
b

)
+E
(
1A+

1 A+
2 A+

b

)
,



25

where (i) follows from the symmetry of the metropolitan links. In (ii), we have used the principle
of inclusion and exclusion for the event A+

1 since A+
1 is defined via Xmax, while Xdiff=Xmax−Xmin

for A+
1 (see (58)). Specifically, we have

1A+
1
= 1A+

12
+ 1A+

1b
− 1A+

12A
+
1b
, (67)

Furthermore, we have substituted the value of Xdiff from (58). Note that, for A+
1 A

+
2 A

+
b , we have

Xdiff=0 which follows from the definition (58). Thus, we have established (59).

Note that the calculation of U1(v) facilitates the calculation of p. Specifically, we have

p = E(1Y=1) = U1(0) . (68)

We describe the computation procedure for U1(v) in Appendix D.1 and subsequently calculate p
as U1(0), which helps us calculate the rate and fidelity via (42), (56), (69), and (70).

The fidelity of teleportation now follows straightforwardly from Lemma 1 as described in the
next theorem.

Theorem 2. The expected fidelity of a teleported qubit in the ER case is given by

(Expected fidelity ER) FER
int =

1+E(we2e)e
−ktclassint /2

2
=
1

2
+
w2

mwbe
−k(tmsg+tclassint /2)

2p
U1(k) , (69)

where U1(·) and k is defined in (57). wm and wb are the Werner parameters of freshly generated
links between an end node and its neighbouring border node, and between two border nodes across
the backbone, respectively.

Proof. In the ER scenario, only the qubit stored in the receiver node undergoes decoherence
during the propagation time of the Pauli correction message between the end nodes tclass

int . Since
the end-to-end link has Werner parameter we2e (60), using (E.4) we obtain the expected fidelity
of the teleported qubit as

E
(1 + we2ee

−ktclassint /2

2

)
=

1 + E(we2e)e
−ktclassint /2

2

(56)
=

1

2
+
w2

mwbe
−k(tmsg+tclassint /2)

2p
U1(k) ,

which establishes (69).

Theorem 3. The expected fidelity of a teleported qubit in the QR case is given by

(Expected fidelity QR) FQR
int =

1

2
+

1

2
w2

mwbe
−k(3tmsg+tclassint /2) e−ktmsg/2 U2(k)

1− e−ktcut/2 U3(k)
, where (70)

U2(v) := E
(
e−v(Xdiff+Xmax)/2 1Y=1

)
, k =

2

tcoh
, (71)

U3(v) := E
(
e−vXmin/2 1Y=0

)
. (72)

Here, tcoh is the memory coherence time of an end or border node. wm and wb are the Werner
parameters of freshly generated links between an end node and its neighbouring border node, and
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between two border nodes across the backbone, respectively. Furthermore,

U2(v) = 2

(
E
(
e−k (3X1/2−X2)1A+

12
) + E

(
e−k (3X1/2−Xb)1A+

1b
)− E

(
e−k (3X1/2−X2)1A+

12A
+
1b
)

)
+ E(e−k (5Xb/2−X1−X2)1A+

b
)− E(e−k (3X1/2−Xb)1A+

1 A+
2
)− 2E(e−k (3X1/2−X2)1A+

1 A+
b
)

+ E(e−kX1/21A+
1 A+

2 A+
b
) , (73)

U3(v) = 2

(
E
(
e−kX2/2 1A−

12

)
+ E

(
e−kXb/2 1A−

1b

)
− E

(
e−kX2/2 1A−

12A
−
1b

))
+ 2E

(
e−kX1/2 1A−

b1

)
− E

(
e−kX1/2 1A−

b1A
−
b2

)
− E

(
e−kXb/2 1A−

1 A−
2

)
− 2E

(
e−kX2/2 1A−

1 A−
b

)
. (74)

Proof. In the QR scenario, the data qubit is first prepared at the sender node in a pure state, and
the end-to-end link generation process begins immediately. During the failed rounds in end-to-end
link generation, the data qubit experiences decoherence for a duration of

N−1∑
i=1

Z
(i)
0 , where Z

(i)
0

iid∼ Z | Y =0 ,

and N denotes the number of required rounds until success; see (37). During the successful round,
the data qubit decoheres further for a duration of

Z1 ∼ Z | Y =1 ;

see (37). Therefore, at the beginning of teleportation, the data qubit has decohered to the state

pd |ϕ⟩ ⟨ϕ|+ (1− pd)
I
2
, where pd := e−(

∑N−1
i=1 Z

(i)
0 +Z1)/tcoh = e−k(

∑N−1
i=1 Z

(i)
0 +Z1)/2 , k = 2/tcoh . (75)

After the BSM is performed on the data qubit and one-half of the end-to-end link, the qubit
stored at the receiver node memory undergoes decoherence during the propagation time of the
Pauli correction message between end nodes tclass

int . Therefore, using (E.4), we obtain the expected
fidelity of the teleported qubit as

E
(1 + we2ee

−k(
∑N−1

i=1 Z
(i)
0 +Z1)/2e−ktclassint /2

2

)
(56)
=

1

2
+

1

2
w2

mwbe
−k(3tmsg+tclassint )/2 E

(
e−k

∑N−1
i=1 Z

(i)
0 /2)

)
E
(
e−k(Xdiff+Z1/2)

)︸ ︷︷ ︸
=:U ′

. (76)

Recall from (36) that p = P(Y = 1). Now the term U ′ in (76) can be simplified further as
follows:

U ′ = E
(
e−k

∑N−1
i=1 Z

(i)
0 /2)

)
E
(
e−k(Xdiff+Z1/2)

)
(77)

=
∞∑
n=1

p(1− p)n−1
(
E
(
e−kZ0/2

))n−1

E
(
e−k(Xdiff+Z1/2)

)
(78)

=
p E
(
e−k(Xdiff+Z1/2)

)
1− (1− p) E

(
e−kZ0/2

) (79)

=
E
(
e−k(Xdiff+Z/2) 1Y=1

)
1− E

(
e−kZ/2 1Y=0

) (80)

(37)
=

e−ktmsg/2 E
(
e−k(Xdiff+Xmax/2) 1Y=1

)
1− e−ktcut/2 E(e−kXmin/2 1Y=0)

(81)

(71),(72)
=

e−ktmsg/2 U2(k)

1− e−ktcut/2 U3(k)
. (82)
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Substituting (82) in (76) establishes (70). To show (73) and (74), we use the principle of inclusion
and exclusion. Recalling the definitions of A+

i and A+
ij from (39), we have

U2(v) = E
(
e−v(Xdiff+Xmax/2) 1Y=1

)
(83)

= E
(
e−v(Xdiff+Xmax/2)1A+

1
)+E

(
e−v(Xdiff+Xmax/2)1A+

2
)+E

(
e−v(Xdiff+Xmax/2)1A+

b
)

−E(e−v(Xdiff+Xmax/2)1A+
1 A+

2
)−E(e−v(Xdiff+Xmax/2)1A+

1 A+
b
)

−E
(
e−v(Xdiff+Xmax/2)1A+

2 A+
b
)+E(e−v(Xdiff+Xmax/2)1A+

1 A+
2 A+

b
) (84)

(i)
= 2E

(
e−v(Xdiff+Xmax/2)1A+

1
)+E

(
e−v(Xdiff+Xmax/2)1A+

b
)−E(e−v(Xdiff+Xmax/2)1A+

1 A+
2
)

−2E(e−v(Xdiff+Xmax/2)1A+
1 A+

b
)+E(e−v(Xdiff+Xmax/2)1A+

1 A+
2 A+

b
) (85)

(ii)
= 2

(
E
(
e−v (3X1/2−X2)1A+

12
)+E

(
e−v (3X1/2−Xb)1A+

1b
)−E

(
e−v (3X1/2−X2)1A+

12A
+
1b
)

)
+E(e−v (5Xb/2−X1−X2)1A+

b
)−E(e−v (3X1/2−Xb)1A+

1 A+
2
)− 2E(e−v (3X1/2−X2)1A+

1 A+
b
)

+E(e−v X1/21A+
1 A+

2 A+
b
) ,

where (i) follows from the symmetry of the metropolitan links. In (ii), we have used the principle
of inclusion and exclusion on the event A+

1 using (67) and expanded the shorthand Xdiff from (58).
Thus, we established (73). Similarly, we can expand U3(v) as

U3(v) = E
(
e−vXmin/2 1Y=0

)
(86)

= E
(
e−vXmin/2 1A−

1

)
+E
(
e−vXmin/2 1A−

2

)
+E
(
e−vXmin/2 1A−

b

)
−E
(
e−vXmin/2 1A−

1 A−
2

)
−E
(
e−vXmin/2 1A−

1 A−
b

)
−E
(
e−vXmin/2 1A−

2 A−
b

)
+E
(
e−vXmin/2 1A−

1 A−
2 A−

b

)
(87)

(i)
= 2E

(
e−vXmin/2 1A−

1

)
+E
(
e−vXmin/2 1A−

b

)
−E
(
e−vXmin/2 1A−

1 A−
2

)
−2E

(
e−vXmin/2 1A−

1 A−
b

)
(88)

(ii)
= 2

(
E
(
e−vXmin/2 1A−

12

)
+E
(
e−vXmin/2 1A−

1b

)
−E
(
e−vXmin/2 1A−

12A
−
1b

))
+

(
E
(
e−vXmin/2 1A−

b1

)
+E
(
e−vXmin/2 1A−

b2

)
−E
(
e−vXmin/2 1A−

b1A
−
b2

))
−E
(
e−vXmin/2 1A−

1 A−
2

)
−2E

(
e−vXmin/2 1A−

1 A−
b

)
(89)

= 2

(
E
(
e−kX2/2 1A−

12

)
+E
(
e−kXb/2 1A−

1b

)
−E
(
e−kX2/2 1A−

12A
−
1b

))
+2E

(
e−kX1/2 1A−

b1

)
−E
(
e−kX1/2 1A−

b1A
−
b2

)
−E
(
e−kXb/2 1A−

1 A−
2

)
−2E

(
e−kX2/2 1A−

1 A−
b

)
,

where (i) follows from the symmetry of the metropolitan links. Note that E
(
e−vXmin/2 1A−

1 A−
2 A−

b

)
=0,

as the subset A−
1 A

−
2 A

−
b is empty. In (ii), we have again used the principle of inclusion and exclu-

sion using (55) as the events of the form A−
i are determined via Xmax, while here we need Xmin.

Furthermore, by symmetry, E
(
Z1A−

b1

)
= E

(
Z1A−

b2

)
. Thus, we established (74) by plugging in the

value of Xmin.

Observe that instead of evaluating U1(v) and U2(v) separately, we can compute

U(v, α) = 2

(
E(e−k((α−1)X1−X2)1A+

12
) + E(e−k((α−1)X1−Xb)1A+

1b
)− E(e−k((α−1)X1−X2)1A+

12A
+
1b
)

)
+ E(e−k(αXb−X1−X2)1A+

b
)− E(e−k((α−1)X1−Xb)1A+

1 A+
2
)− 2E(e−k((α−1)X1−X2)1A+

1 A+
b
)

+ E(e−k(α−2)X11A+
1 A+

2 A+
b
) , (90)
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which gives

U1(v) = U(v, 2) , U2(v) = U(v, 5/2) . (91)

We evaluate the individual terms of (90) in Appendix D.1, which are given by (D.8), (D.15),
(D.20), (D.27), (D.33), (D.37), and (D.40). Plugging in these computations in (90), we can
compute U1 using (91), which gives the expected teleportation fidelity in the ER case via (69).
Note that we can obtain U2 in the same way. For U3 described in (74), the calculable expressions
of the individual terms are given in (D.47), (D.53), (D.61), (D.65), (D.69), (D.73), and (D.78)
in Appendix D.2. Having obtained U2 and U3, we can compute the expected fidelity in the QR
case via (70). The analytical expressions derived in this section help us analyse the behaviour
of the performance metrics as functions of the hardware parameters without running extensive
simulations, which we take up in the next section.

6. Evaluations

In this section, we specify exact empirical requirements corresponding to Q1–Q4 for the
network from Fig. 1, when the baseline and optimistic parameters are set according to Tab. 3. As
already mentioned, the questions Q1–Q4 involve the performance metrics teleportation rate and
fidelity, which we derive analytically. This lets us answer the questions without having to run ex-
tensive simulations. In the following, we present our findings for teleportation in the MN and the
IN separately. We also provide empirical validation of our analytical results for the performance
metrics before we delve into Q1–Q4.
6.1. Teleportation in a Metropolitan Network

Recall that in Q1, we investigate the hardware requirements for teleportation in an MN of Fig. 1.
Here, the end nodes are separated by 50 km. The key hardware parameters that influence the
performance metrics, i.e., the expected teleportation fidelity and rate, are the base efficiency p0m,
memory coherence time tcoh, and metropolitan link fidelity fm′ . We explain in Appendix A.3
that the teleportation fidelity in the ER case is deterministic while the rate equals that of the
QR case. Thus, we compare the analytically derived expected teleportation fidelity and rate with
their empirical values only in the QR case. The empirical values are obtained by simulating [101]
in NetSquid, and we present the comparison in Fig. 3.

To simulate average fidelities, we fix the memory coherence time tcoh and the metropolitan link
fidelity fm′ at their baseline and optimistic values, i.e. (62ms, 4 s), and (0.88, 0.95), respectively,
while we let the base efficiency p0m vary between 10−4 and 1. We keep tprep=175ms, following the
supplementary material of [16]. For each observation point, we run the experiment for 100 batches
with each batch comprising 100 independent runs. Each batch produces a single observation for
the average teleportation fidelity. We also compute the 5th and the 95th percentiles of the (batch)
average fidelities. Further, the analytical values of the expected teleportation fidelity are derived
using (A.7). We observe close agreement between the analytical and simulation results in Fig. 3a.
Since the teleportation rate only depends on the base efficiency p0m, we calculate the simulated
rate for each batch as a function of p0m. The number of batches and runs per batch remains the
same as in Fig. 3a. Further, the analytical value of the rate is derived using (A.3). We observe in
Fig. 3b that the analytical and simulation results are consistent in this case as well.

We now address Q1, i.e., identify the hardware requirements necessary to attain teleportation
in the MN with the target teleportation fidelity ftarget. As mentioned, the baseline hardware



29

-4 -3 -2 -1 0
log10(p0

m)

0.5

0.7

0.9

Ex
pe

ct
ed

 te
le

po
rta

tio
n 

fid
el

ity tcoh = 62ms, fm′ = 0.88
tcoh = 62ms, fm′ = 0.95
tcoh = 4s, fm′ = 0.88
tcoh = 4s, fm′ = 0.95

(a) Expected teleportation fidelity

-4 -3 -2 -1 0
log10(p0

m)

0

50

100

150

200

250

Te
le

po
rta

tio
n 

ra
te

 (s
1 )

(b) Teleportation rate

Figure 3: Comparison of analytical (lines) and simulation results (dots) for qubit-ready
teleportation in an MN. The mean, along with the 5th and 95th percentiles of the performance
metrics, is shown as a function of the base efficiency p0m. (a) The expected teleportation fidelity is
evaluated for both baseline and optimistic values of memory coherence time tcoh and metropolitan
link fidelity fm′ , while (b) the teleportation rate depends solely on p0m. Simulation results closely
match the analytical values.

parameter values are set as per Tab. 3. Since the hardware parameter space is three-dimensional,
we plot the surface corresponding to the minimum required link fidelity fm′ among the parameter
space that achieves the target fidelity of teleportation. Recall that the surface Λ̃ER

1+ (resp. Λ̃QR
1+ )

in the ER (resp. QR) case is given by (27) (resp. (30)), while the region above this surface
corresponds to the desired parameter space ΛER

1+ (resp. ΛQR
1+ ) as defined in (25) (resp. (29)).

We plot the surface Λ̃ER
1+ in Fig. 4a and its colour represents the rate of teleportation RER

1 as
defined in (28). As expected, the rate only depends on the base efficiency p0m. We also observe
that the baseline values of the parameters (p0m, tcoh, fm′) denoted by B : (5.95× 10−4, 62ms, 0.88)
lie above the surface, which implies that we can already achieve teleportation in the MN with
target fidelity based on state-of-the-art hardware. Specifically, the baseline yields an expected
teleportation fidelity of 0.92 and a corresponding teleportation rate of 0.14 s−1.

We show the surface Λ̃QR
1+ in Fig. 4b where the colour of the surface corresponds to the

teleportation rate RQR
1 . In contrast with Fig. 4a, the baseline (B) in this case lies below the surface,

indicating that the current hardware capabilities are insufficient to meet the target for expected
teleportation fidelity. Thus, we aim to numerically calculate an optimal point in the set ΛQR

1∗ ,
defined in (31). Recall that the optimal points refer to hardware parameter configurations which
achieve the target fidelity and are easiest to achieve from the baseline values in terms of the cost
function c from (21). For the numerical optimisation, we employ a global optimisation heuristic
from [88]. To improve its performance, we run the optimiser 50 times and select the solution with
the lowest hardware cost among all runs. The resulting optimal point O:(1.43× 10−2, 196ms, 0.88)
is shown in Fig. 4b, which yields the target expected teleportation fidelity 2/3 at a rate of 3.36 s−1.

6.2. Teleportation in Intercity Network

As discussed in Q2–Q4, we investigate the requirements for teleportation in an IN of Fig. 1.
Specifically, the scenario involves teleporting a data qubit across 500 km between two nodes located
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Figure 4: Requirements to achieve the target teleportation fidelity of 2/3 in an MN. The
surfaces represent the minimum required metro link fidelity fm′ as a function of p0m and tcoh

for (a) entanglement-ready and (b) qubit-ready teleportation. The colour of the surface shows
the corresponding teleportation rate. The baseline (denoted B) in (a) already achieves the
target fidelity of teleportation, while an optimal (denoted O) parameter configuration subject
to hardware cost c is shown in (b). The (p0m, tcoh, fm′) coordinates of the points in (b) are B:
(5.95× 10−4, 62ms, 0.88) and O: (1.43× 10−2, 196ms, 0.88).

in separate MNs. Here, each end node is located 25 km from its respective metropolitan hubs,
and the hubs are connected by a 450 km backbone. The key hardware parameters influencing
the teleportation fidelity and rate include the metropolitan base efficiency p0m, memory coherence
time tcoh, metropolitan link fidelity fm, entanglement-generation probability in backbone pb, and
backbone fidelity fb. The non-hardware parameter cut-off time (tcut) plays a role in shaping the
performance metrics as well. As in Sec. 6.1, we rely on analytical expressions for the teleportation
rate and expected fidelity derived in Appendix C and Appendix D to answer Q2–Q4 as it
obviates the need to run extensive simulations. We also provide a comparison of the analytical
values of the performance metrics with corresponding empirical estimates from NetSquid-based
simulations [101] to show their accuracy.

To simulate average fidelities and rate, we fix the base efficiency p0m and the backbone
entanglement-generation probability pb at their baseline and optimistic values, i.e., (5.95 ×
10−4, 1.43 × 10−2) and (1.51 × 10−6, 4.18 × 10−3), respectively, while we vary the cut-off time
tcoh between 0.04 s and 4 s. Note that the other parameters, namely, the memory coherence time
tcoh, metropolitan link fidelity fm, and backbone link fidelity fb, are kept at their optimistic
values, i.e., 4 s, 0.95, and 0.9, respectively. Similar to Sec. 6.1, we derive empirical estimates
of average teleportation fidelity and rate by running simulations for 100 batches, each batch
consisting of 100 independent runs. Each batch yields an estimate of the average fidelity and rate,
and we subsequently derive the mean and the 5th and 95th percentiles of the batch averages. We
compare the analytical values of the expected teleportation fidelity with their empirical estimates
in the entanglement-ready (ER) and qubit-ready (QR) cases in Fig. 5a and Fig. 5b, respectively.
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Figure 5: Comparison of analytical (lines) and simulation results (dots) for the expected
teleportation fidelity as a function of cut-off time tcut for (a) entanglement-ready and (b) qubit-
ready teleportation. Each simulation point corresponds to the mean fidelity of batch average
values, with error bars denoting the 5th and 95th percentiles across batch averages. The
entanglement generation probabilities p0m, and pb are set at their baseline (p0

m
=5.95× 10−4, p

b
=

1.51×10−6) and optimistic values (p0m=1.43×10−2, pb=4.18×10−3), as indicated in the legend. All
remaining parameters are fixed at their respective optimistic values, i.e., fm=0.95, tcoh=4 s, and
fb=0.90. The analytical expected teleportation fidelity matches closely with the empirical mean.

Since the rate of teleportation is the same for both cases, we do not make any distinction.
The corresponding comparison is shown in Fig. 6. The close agreement between analytical and
simulation results in Fig. 5 and 6 demonstrates the accuracy of our analytical results.

In the ER case (Fig. 5a), the expected fidelity decreases monotonically with increasing cut-
off time. This occurs because longer cut-off times allow noisier elementary links to contribute,
degrading the overall end-to-end fidelity. In contrast, the QR case (Fig. 5b) exhibits a non-
monotonic behaviour with respect to the cut-off time tcut. Here, short cut-off times result in
frequent link discards, leading to prolonged end-to-end link generation times and causing increased
decoherence for the data qubit. Although this yields high fidelity for the end-to-end link, the
overall teleportation fidelity suffers due to data qubit degradation. For higher cut-off times, the
waiting time decreases on average but we allow elementary links with lower fidelity to form the end-
to-end link. This naturally leads to the formation of low fidelity end-to-end link and, subsequently,
low teleportation fidelity. In contrast, observe from Fig. 6 that the teleportation rate, which is the
inverse of the expected end-to-end link generation time, always increases with tcut, as expected.

Recall that in Q2, we aim to find the minimal metropolitan hardware requirements needed
to reach ftarget while the backbone parameters are fixed at their optimistic values: pb =

4.18 × 10−3, fb = 0.90; see Tab. 3. In Fig. 7a, we identify the surface Λ̃ER
2+ given by (B.6)

representing the minimum required metropolitan link fidelity fm among the metropolitan hardware
parameter space that achieves the target teleportation fidelity in the ER case. The region above
this surface corresponds to the desired parameter space ΛER

2+ defined in (B.5). The colour of the
surface Λ̃ER

2+ in Fig. 7a represents the maximum achievable teleportation rate RER
2 defined in (B.9).

We observe that for a fixed coherence time tcoh, the required link fidelity fm does not change much
with varying base efficiency p0m. Moreover, for tcoh≤0.02 s, the required fm increases sharply and
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Figure 6: Comparison of analytical (lines) and simulation results (dots) for the teleportation rate
as a function of cut-off time tcut. Each simulation point represents the mean of rates computed
across batches, and error bars indicate the 5th and 95th percentiles of batch averages. The
entanglement generation probabilities p0m, and pb are set at their baseline (p0

m
= 5.95 × 10−4,

p
b
=1.51 × 10−6) and optimistic values (p0m =1.43 × 10−2, pb =4.18 × 10−3), as indicated in the

legend. The coherence time tcoh is fixed at its optimistic value 4 s. The strong agreement between
simulation results and analytical predictions confirms the validity of the analytical model.

eventually renders the target fidelity unachievable. Moreover, since we vary the cut-off time tcut

in the range given by (16), the rate is implicitly influenced by tcoh via tcut. As a result, for a fixed
p0m, increasing tcoh allows for longer cut-off times, leading to higher rates. Also, as expected, the
rate increases monotonically with increasing p0m. This is more prominent for higher values of tcoh

and p0m in the plot. A crucial observation from Fig. 7a is that the baseline value of the parameters
B: (5.95× 10−4, 62ms, 0.88) (shown in white) lies above the surface Λ̃ER

2+ , indicating that we can
already achieve ER teleportation in the IN under state-of-the-art metropolitan hardware and
optimistic backbone parameter estimates. The corresponding maximum rate achievable under
this configuration is 4.00× 10−4 s−1, associated with an expected fidelity 2/3.

We plot the analogous surface Λ̃QR
2+ in the QR scenario in Fig. 7b. Here, the baseline point B

(shown in white) falls below the surface Λ̃QR
2+ , indicating that the current hardware cannot achieve

the fidelity threshold ftarget. Thus, we perform numerical optimisation over the parameter space
to identify an optimal point in the set ΛQR

2∗ defined in (B.12). Similar to Sec. 6.1, we run the
optimiser 50 times and select the solution with the lowest hardware cost among all runs. The
resulting optimal point O: (1.40× 10−2, 1095ms, 0.94) is shown in yellow in Fig. 7b, which yields
the target fidelity at a rate of 1.32 s−1.

We now address Q3, where we fix the metropolitan parameters at their respective optimistic
values p0m =1.43 × 10−2, tcoh =4 s, fm =0.95 (see Tab. 3) and identify the backbone requirements
necessary to achieve target teleportation fidelity. Since the relevant hardware parameter space for
the backbone is two-dimensional, comprising the entanglement-generation probability pb and link
fidelity fb, we plot the desired parameter space ΛER

3+ (resp. ΛQR
3+ ) described in (B.15) (resp. (B.19))

that achieves the target expected teleportation fidelity in the ER (resp. QR) case. The colour of
the space ΛER

3+ in Fig. 8a represents the corresponding maximum achievable teleportation rate RER
3 ,

defined in (B.17). The contour lines indicate the parameter combinations that yield equal rates
in units of s−1. For a fixed pb, lower values of fb require shorter cut-off times to meet the target
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Figure 7: Requirements to achieve the target teleportation fidelity of 2/3 in an IN with the
backbone parameters fixed at optimistic values: pb=4.18× 10−3, fb=0.9. The surface represents
the minimum required link fidelity fm as a function of the base efficiency p0m and the memory
coherence time tcoh for (a) entanglement-ready and (b) qubit-ready teleportation. The colour of
the surface encodes the maximum achievable teleportation rate, subject to meeting the target
teleportation fidelity. The baseline (denoted B) in (a) already achieves the target teleportation
fidelity, while an optimal (denoted O) parameter configuration subject to minimising the hardware
cost c is shown in (b). The (p0m, tcoh, fm) coordinates of the points are B:(5.95× 10−4, 62ms, 0.88),
and O: (1.40× 10−2, 1095ms, 0.94).

expected fidelity, which in turn reduces the teleportation rate. As fb increases, the configuration
achieves the target teleportation fidelity with a much higher cut-off, leading to a higher rate.
However, beyond a certain threshold, further increasing fb offers no additional benefit, as the
rate becomes limited by pb within the allowed range of cut-off time given in (16). This effect is
reflected in the shape of the contour lines: they are curved at low fb and tend to become vertical
as fb increases. Furthermore, we observe that the baseline value of the backbone parameters
(pb, fb), denoted by B: (1.51 × 10−6, 0.60) lies within the ΛER

3+ , indicating that this configuration
achieves the target fidelity of teleportation. The baseline yields a maximum teleportation rate
6.16× 10−4 s−1 with an expected teleportation fidelity of ftarget.

For the QR case, we plot the desired space ΛQR
3+ defined in (B.19) in Fig. 8b. The colour of the

space represents the maximum achievable rate RQR
3 defined in (B.21). In contrast to the ER case,

the baseline parameter value falls outside the desired region, indicating the need for improved
hardware. Thus, we numerically optimise over the backbone parameter space to identify an
optimal point in the set of minimal hardware requirements ΛQR

3∗ enabling teleportation with the
target fidelity as defined in (B.20). Using a similar optimisation procedure as before, our optimiser
produces the optimal point O: (2.73× 10−3, 0.64) shown in yellow in Fig. 8b. The optimal point
achieves an expected teleportation fidelity of ftarget with a maximum achievable rate of 0.92 s−1.

Finally, in Q4, we aim to determine the minimal hardware improvements over the baseline
values of both metropolitan and backbone parameters necessary to reach the target teleportation
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Figure 8: Requirements to achieve the target teleportation fidelity of 2/3 in an IN where the
metropolitan parameters are fixed at their respective optimistic values p0m=1.43× 10−2, tcoh=4 s,
fm=0.95. The coloured region represents the desired parameter space ΛER

3+ (a) and ΛQR
3+ (b) in

the entanglement-ready and qubit-ready case, respectively. The colour encodes the maximum
achievable teleportation rate RER

3 (a) and RQR
3 (b) subject to meeting the fidelity threshold. The

baseline (denoted B) in (a) already achieves the target teleportation fidelity, while the optimal
(denoted O) parameter configuration subject to hardware cost c is shown in (b). The (pb, fb)

coordinates of the points are B: (1.51× 10−6, 0.60) and O: (2.73× 10−3, 0.64). The contour lines
indicate parameter combinations that yield equal rates.

fidelity. In this setting, all five hardware parameters, namely the metropolitan base efficiency
p0m, memory coherence time tcoh, metropolitan link fidelity fm, backbone entanglement-generation
probability pb, and backbone link fidelity fb are allowed to vary, in addition to the non-hardware
parameter, cut-off time tcut. Using the baseline values for these parameters, the maximum
achievable expected teleportation fidelities are 0.61 in the ER case and 0.50 in the QR case,
both below the target threshold. This indicates that hardware improvements are necessary in
both scenarios. Due to the high dimensionality of the parameter space, we do not visualise
the full desired space and optimisation landscape. Instead, we numerically identify an optimal
parameter configuration in the optimal set ΛER

4∗ for the ER case and in ΛQR
4∗ in the QR case;

see (B.24) and (B.28), respectively, for the definition of the optimal set. Similar to Sec. 6.1, we
conduct 50 independent optimisation runs and select the output corresponding to the minimum
hardware cost. For the ER case, the (p0m, tcoh, fm, pb, fb) coordinates of the resulting optimal
point is (6.45× 10−4, 64ms, 0.89, 1.57× 10−6, 0.67), which achieves the expected teleportation
fidelity 2/3 with a corresponding rate 2.58 × 10−9 s−1. Note that the backbone link fidelity
fb stands out as the dominant bottleneck, while improvements in the other parameters remain
modest. In the QR case, the coordinates of the corresponding optimal point are given by
(1.41× 10−2, 1128ms, 0.95, 4.16× 10−3, 0.87), which achieve the target expected fidelity 2/3 with
corresponding rate 1.24 s−1. As expected, the improvements are significantly more demanding
than in the ER case, with the coherence time tcoh requiring the most substantial enhancement.

In Fig. 9, we show the improvement factors corresponding to the optimal hardware parameter
values, with corresponding legends indicating ER or QR cases of relevant questions. The length of
each bar is normalised relative to the improvement factor associated with the optimistic value of
the corresponding parameter, which is shown in solid black. Annotations next to the bars indicate
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Figure 9: Required improvements for individual hardware parameters for enabling teleportation
with target fidelity for Q1–Q4. Improvement factors quantify the extent to which a given
parameter must be enhanced relative to its baseline value to meet the fidelity threshold. A
factor of 1 indicates no required improvement, while larger values reflect increasingly stringent
requirements. The length of each bar represents the improvement factor corresponding to
enhancing a parameter, and is normalised relative to the corresponding optimistic values shown
in black. Annotations beside the bars indicate the actual improvement factor for the relevant
question. Here f(·) refers to fm′ for Q1-QR while for all other cases, f(·) corresponds to fm. We
represent them together as they share the same baseline and the same optimistic values. Note
that not all hardware parameters are relevant for every question considered.

the actual improvement factors determined by the optimisation procedure. Recall from (20)
that the baseline value of a parameter corresponds to the improvement factor of 1. Along the
vertical axis, we represent different hardware parameters. Here f(·) refers to fm′ for Q1-QR, and
fm elsewhere. We represented fm′ and fm together, as they share the same baseline and the
same optimistic values. Note that across all instances of QR teleportation, the optimal value of
the metropolitan base efficiency p0m reaches its optimistic value due to the fact that the room
for improvement for p0m in terms of IF is low compared to other parameters. In Q1-QR, for
instance, metropolitan link fidelity fm′ remains near its baseline value, i.e. corresponding to an
improvement factor of 1, indicating that enhancing p0m and tcoh is relatively more beneficial from
a cost-performance perspective. In contrast, for more demanding scenarios such as Q2-QR and
Q4-QR, fm is increased close to its optimistic value while tcoh is moderately improved, suggesting
its effectiveness over tcoh from the perspective of cost-performance trade-off under these scenarios.
Regarding the backbone parameters, optimisation in Q3-QR returns a substantial improvement
in its entanglement-generation probability pb, compared to the corresponding link fidelity fb,
reflecting the advantage of the former in terms of cost-performance trade-off. Further, in Q4-ER,
all parameters require only modest improvements from their baselines, except for fb, which stands
out as the key bottleneck. In contrast, Q4-QR demands near-optimistic improvements across all
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parameters, except for tcoh and fb, with moderate improvement in fb, indicating that enhancing
the remaining parameters is more efficient under the considered cost function.

7. Conclusion and Future Work

In this work, we present an analysis to identify the hardware requirements for enabling
quantum teleportation over metropolitan and intercity-scale distances. To this end, we derive
closed-form analytical expressions for the expected fidelities and rates of end-to-end entanglement
and teleported qubit as functions of relevant hardware parameters. Throughout, we adopt a sim-
ple yet realistic noise model that accounts for memory decoherence and a finite cut-off time for
entanglement generation rounds. Determining the minimal hardware requirements is formulated
as an optimisation problem over the parameters, with the analytical expressions enabling efficient
exploration of this parameter space without resorting to computationally intensive simulations.
Using this approach, we obtain the minimal parameter values required to achieve the target
teleportation fidelity of 2/3. We perform the analysis in a hardware-agnostic manner, in which
network performance is fully characterised by parameters describing elementary link generation
probabilities, entanglement fidelities, and memory coherence time.

While the analysis remains hardware-agnostic, we also provide a concrete case study based
on realistic parameter values from trapped-ion and ensemble-based memories. Within this frame-
work, we address four central questions: (i) the feasibility of teleportation over metropolitan-
scale distances with present-day hardware; (ii) the parameter improvements required within the
metropolitan network with fixed backbone performance; (iii) the parameter improvements re-
quired within the backbone with fixed metropolitan network performance; and (iv) the minimal
joint improvements necessary when both the metropolitan network and backbone operate near
state-of-the-art experimental performance to enable teleportation over intercity-scale distances.

Our results indicate that near-term advances in trapped-ion and ensemble-based platforms,
under optimistic parameter regimes, could enable quantum teleportation across metropolitan and
intercity distances. Achieving these optimistic parameters would require improvements in hard-
ware performance, which is feasible according to the current projections of hardware capabilities in
the near term. Collectively, these findings establish clear design principles for making experimental
progress: the elementary link generation probabilities in both metropolitan and backbone net-
works emerge as the most practical parameters to optimise, as the heuristic consistently favoured
their improvement and drove them to optimistic values when necessary. This behaviour arises
because the range of feasible improvements, from baseline to optimistic values, is smaller for the
link generation probability parameters compared to others. Furthermore, in scenarios (ii) and
(iii), entanglement-ready teleportation was feasible provided that at least one of the networks,
either metropolitan or backbone, is operating at the optimistic parameter regime. However, it
is important to emphasise that these optimistic estimates are obtained for individual parameters
and do not always account for potential interdependencies among them. For instance, repeated
photon generation attempts in trapped-ion systems can induce additional decoherence, thereby
reducing the effective coherence time. Consequently, achieving all optimistic parameters simul-
taneously within a single device or experiment poses a significant challenge, and such analysis
is left as future work. Also, building on this work, one can further investigate the performance
of longer repeater chains, identify hardware requirements for more involved applications such
as blind quantum computation, and determine the conditions for simultaneously meeting target
thresholds for teleportation rate and fidelity by appropriately modifying the cost function.
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Appendix A. Derivation of Teleportation Rate and Expected Fidelity in the
Metropolitan Network

In our model, teleportation in an MN proceeds by first generating entanglement between two
end nodes in the same MN via HEG, followed by the teleportation step. We characterise the net-
work by the expected entanglement fidelity, corresponding rate, and the memory coherence time
of the end nodes. The teleportation rate is a function of the entanglement-generation probability
between end nodes at zero separation, i.e., the base efficiency, and for the base and optimistic
values, we use experimental and projected values, respectively, from trapped-ion platforms. In
Sec. Appendix A.1, we derive the dependence of the base efficiency on experimentally relevant
parameters. Next, we derive the expressions for the teleportation rate and fidelity in Appendix
A.2 and Appendix A.3, respectively. Note that we do not model the entanglement fidelity as a
function of the experimental parameters but rather use the corresponding baseline value as the
one obtained in state-of-the-art experiments [14]. We apply the same for the coherence time which
we model as a decoherence channel.
Appendix A.1. Relating Metropolitan Entanglement-Generation Probability to Trapped-Ion
Experiments

In this section, we provide a detailed explanation of the hardware parameters and entanglement
generation between remote nodes using trapped-ion devices [14–17]. Note that, in this work,
we model the entanglement generation and teleportation scheme under the assumptions A1–A9.
The purpose of this is to provide a simple and general model for a platform-agnostic setup. The
parameters required to obtain the form of the entanglement-generation probability are

• Efficiency for collecting a photon emitted from the ion (ηion): The probability of
successfully collecting a photon emitted from the ion upon excitation, into the fibre, excluding
fibre transmission losses. If you push a button to get the photon out, this is the probability
that it comes out. This includes every loss except detector and fibre transmission losses.

• Detection efficiency for photons at ion frequency (ηion-freq
det ): The efficiency of detectors

optimised for the natural emission frequency of Ca+ ions.

• Frequency conversion efficiency, ion to telecom (ηFC): The fraction of photons
successfully converted from the Ca+ emission frequency to telecom frequency, including
additional losses in fibre.

• Detector efficiency at telecom frequency (ηtelecom
det ): The probability of detecting a

photon incident on the detector, without any other inefficiencies being included here.

• Efficiency of using a ‘truncated detection window’ (ηpenalty): In the two-click scheme
experiment, a wider detection window allows for more photons but may include more noise,
while a narrower window improves fidelity but reduces the detection rate. Hence, selecting
a narrow coincidence window helps improve ion-ion entanglement fidelity, reducing the total
success probability of the protocol.

• Average preparation time between shots (tprep
m ): The average time required for

sequential photon generation via laser excitation, including experimental cycle delays such
as initialisation, cooling, optical pumping, etc.

Recall from (5) that since two end nodes in a metropolitan network are separated by a distance
2d′m with the hub being at the midpoint (see Fig. 1), the average time per entanglement generation
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attempt is given by tm= tprep
m +2tclass

m , where tclass
m =dm′/c and c is the speed of light in fibre.

Recall from A3 that in our model, we adopt the sequential double-click HEG protocol [81]
Note that we consider a simple model with parameters explained above and do not consider other
factors such as imperfect indistinguishability, non-photon-number-resolving detectors, detector
dark counts [39], etc. First, both end nodes, here trapped-ion devices, generate matter-photon
entanglement and send the photon towards the central hub. The photons emitted by the ions with
efficiency ηion are frequency converted to telecom frequency with an efficiency ηFC. Node-to-node
entanglement is heralded by the BSM at the hub. Specifically, this corresponds to the detection of
two photons after interference, with a detection efficiency ηtelecom

det . Thus, using detectors optimised
for telecom frequencies and using a truncated detection window, the base efficiency p0m is given by

p0m =
1

2
ηpenalty

(
ηion ηFC η

telecom
det

)2
. (A.1)

Substituting the parameter values from Tab. A1 into (A.1) yields the baseline and optimistic
values of p0m as 5.95× 10−4 and 1.43× 10−2, respectively. Consequently, recall from (4) that the
entanglement-generation probability when the two nodes are separated by a distance 2dm′ (km)
is given by

pm′ = p0m10
−2αdm′/10 .

Next, we derive the teleportation rate and expected fidelity for entanglement-ready and qubit-
ready modes of teleportation in a metropolitan network.

Table A1: Baseline and optimistic parameter values from trapped-ion experiments. The optimistic
parameter values represent projected technological advancements anticipated within the next 5-10
years, based on current development trajectories and experimental progress rates, and obtained
in consultation with experimental physicists at the University of Innsbruck. The value for
ηpenalty = 0.12 is obtained from [14] by accepting 3.5 clicks per minute with a truncated detection
window, instead of 0.49 clicks per second with an almost-whole detection window. We set both
the baseline and optimistic value of tprep to be 175µs, following the supplementary material of [16].

Parameter Baseline value Optimistic value

ηion 0.462/0.87 [18] 0.5/0.87 [93]
ηion-freq

det 0.87 [18] 0.87 [93]
ηFC 0.25 [15] 0.70 [93]
ηpenalty 0.12 [14] 0.20 [93]
ηtelecom

det 0.75 [17] 0.94 [93]
tprep
m 175µs [93] 175µs [93]

Appendix A.2. Teleportation Rate in the Metropolitan Network

In our model, the rate at which a qubit can be teleported between end nodes in an MN
is determined by the time required to establish end-to-end entanglement and subsequent
teleportation time. Due to A9, the teleportation time includes the transmission time of the
Pauli correction message from the sender node to the receiver, given by tclass

m . Further, let the
random variable Xm′ represent the time to establish a node-to-node entanglement successfully.
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Since we assume that data qubit preparation is instantaneous (see A9), the total time required
in both ER and QR teleportation is given by tclass

m + Xm′ . Thus, the teleportation rate in both
cases is given by

Rm =
1

E(tclass+Xm′)
=

1

tclass+E(Xm′)
. (A.2)

Let M ′ be the number of attempts to create an entangled pair in the MN and M ′ ∼ Geo(pm′) 6,
such that Xm′ = tm′M ′. Hence, we have

Rm =
1

2tclass
m +E(tm′M ′)

(i)
=

1

2tclass
m +tm′/pm′

=
pm′

2pm′tclass
m +tm′

, (A.3)

where in (i), we used E(M ′)=1/pm′ , for geometric distribution. Since the heralded entanglement
generation process and hardware parameter values are related to trapped-ion experiments [14–17],
the derivation of the entanglement-generation probability pm′ is given in Appendix A.1, and the
state-of-the-art and optimistic values are presented in Tab. A1.

Appendix A.3. Expected Teleportation Fidelity in the Metropolitan Network

In the ER teleportation, we teleport a pure state once we have successfully prepared an entangled
link with fidelity fm′ , or corresponding Werner parameter wm′ =(4fm′−1)/3. Observe that in the
ER case, the link fidelity is deterministic. Thus, using (E.4), the expected teleportation fidelity
is given by

E(FER
m ) = FER

m =
1 + wme

−tclassm /tcoh

2
. (A.4)

For the QR case, the data qubit is initially prepared at the sender node and stored in memory,
where it undergoes decoherence until an entangled link is established in the network. This waiting
time for one teleportation round is given by Xm′ = tm′M ′, where M ′ is the number of entanglement
generation attempts until success. Thus, from (E.4), we obtain the expected fidelity in QR
teleportation as

E(FQR
m ) = E

(1 + wme
−Xm′/tcohe−tclassm /tcoh

2

)
(A.5)

=
1

2
+

1

2
wm′e−tclassm /tcohE(e−tm′M ′/tcoh) (A.6)

=
1

2
+

1

2
wm′e−tclassm /tcoh

pm′

etm′/tcoh + pm′ − 1
. (A.7)

Appendix B. Reformulation of Q2–Q4

Recall that in Q2–Q4, we consider teleportation across nodes in an IN, e.g., between nodes
P1 and P3 in Fig. 1. To identify the desired parameter space for the backbone, we introduce the
following shorthands for the relevant hardware parameters and the parameter space:

λ⃗m := (p0m, tcoh, fm) , ⃗
=
λm := (

=
p0m,=tcoh,

=
fm) , λ⃗m := (p0

m
, tcoh, fm

) , λ⃗m := (p0m, tcoh, fm) , (B.1)

Λm := [
=
p0m, p

0
m]× [

=
tcoh, tcoh]× [

=
fm, fm] , Λm,base := [p0

m
, p0m]× [tcoh, tcoh]× [f

m
, fm] , (B.2)

λ⃗b := (pb, fb) , ⃗
=
λb := (

=
pb,

=
fb) , λ⃗b := (p

b
, f

b
) , λ⃗b := (pb, fb) , (B.3)

Λb := [
=
pb, pb]× [

=
fb, fb] , Λb,base := [p

b
, pb]× [f

b
, fb] . (B.4)
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Given that we have two sets of parameters for the MN (λ⃗m) and the backbone (λ⃗b), Q2-Q3 inves-
tigate the minimal hardware improvement necessary in the following sense. We fix parameters of
one segment (e.g., λ⃗b) to its optimistic values and vary the other (e.g., λ⃗m) along with the cut-off
time to determine whether we can achieve the target performance. If this condition is satisfied
in both cases, i.e., by fixing either λ⃗m = λ⃗m or λ⃗b = λ⃗b and without exceeding the respective
optimistic bounds subsequently, then this indicates that near-term experimental realisation is
feasible using the considered hardware platforms. Furthermore, this approach provides a lower
bound on the minimal improvements required for each segment. Conversely, if the target cannot
be achieved under these constraints, alternative hardware platforms would be required to support
intercity teleportation with the desired fidelity. We first reformulate Q2–Q3 below.

Appendix B.1. Reformulation of Q2

In Q2, we investigate the achievable performance of intercity teleportation while keeping the
backbone hardware parameters fixed at their optimistic values λ⃗b. Thus, for the ER teleportation
in the IN, we obtain the desired hardware parameter space, the surface for visualisation, and the
set of optimal points (if the baseline does not belong to the desired parameter space), respectively,
as follows

ΛER
2+ := {λ⃗m ∈ Λm : max

tcut∈Tcut
E
(
FER

int (λ⃗m, λ⃗b | tcut)
)
≥ ftarget} , (B.5)

Λ̃ER
2+ := {(p0m, tcoh, fm) ∈ ΛER

2+ : fm = min
(p0m,tcoh,z)∈ΛER

2+, tcut∈Tcut

z} , (B.6)

ΛER
2∗ :=

{
λ⃗m ∈ Λm,base : c

(
(λ⃗m, λ⃗b), (λ⃗m, λ⃗b), F

ER
int | tcut)

= min
λ⃗′
m∈Λm,base, t

′
cut∈Tcut)

c
(
(λ⃗′m, λ⃗b), (λ⃗m, λ⃗b), F

ER
int | t′cut

)}
. (B.7)

For each set of points on the surface Λ̃ER
2+ , we define the set of cut-off times that achieves the

fidelity threshold as

TER
2 (λ⃗m) = {tcut ∈ Tcut : E

(
FER

int (λ⃗m, λ⃗b | tcut)
)
≥ ftarget} . (B.8)

Since the teleportation rate is a non-decreasing function of the cut-off time, we define the rate for
λ⃗m ∈ Λ̃ER

2+ as the best achievable rate when tcut ∈ TER
2 (λ⃗m):

RER
2 (λ⃗m) = Rint

(
p0m, tcoh, pb | max(TER

2 (λ⃗m))
)
, (B.9)

where Rint denotes the teleportation rate in the IN as mentioned in Tab. 2.
Similarly, for QR teleportation, the required sets are given as

ΛQR
2+ := {λ⃗m ∈ Λm : max

t′cut∈Tcut
E
(
FQR

int (λ⃗m, λ⃗b | t′cut)
)
≥ ftarget} , (B.10)

Λ̃QR
2+ := {(p0m, tcoh, fm) ∈ ΛQR

2+ : fm = min
(p0m,tcoh,z)∈ΛQR

2+ , tcut∈Tcut

z} , (B.11)

ΛQR
2∗ :=

{
λ⃗m ∈ Λm,base : c

(
(λ⃗m, λ⃗b), (λ⃗m, λ⃗b), F

QR
int | tcut)

= min
λ⃗′
m∈Λm,base, t

′
cut∈Tcut)

c
(
(λ⃗′m, λ⃗b), (λ⃗m, λ⃗b), F

QR
int | t′cut

)}
. (B.12)
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Further, the best achievable teleportation rate for λ⃗m ∈ Λ̃QR
2+ is given by

RQR
2 (λ⃗m) = Rint

(
p0m, tcoh, pb | max(TQR

2 (λ⃗m))
)
, where (B.13)

TQR
2 (λ⃗m) = {tcut ∈ Tcut : E

(
FQR

int (λ⃗m, λ⃗b | tcut)
)
≥ ftarget} . (B.14)

Appendix B.2. Reformulation of Q3

In contrast with Q2, we fix the metropolitan parameters at their optimistic values λ⃗m in Q3. In
this setting, we aim to identify the desired parameter space and, if necessary, the set of optimal
hardware parameters for the backbone to achieve the target fidelity of intercity teleportation. We
characterise these sets for ER teleportation, respectively, as follows

ΛER
3+ := {λ⃗b ∈ Λb : max

t′cut∈Tcut
E
(
FER

int (λ⃗m, λ⃗b | t′cut)
)
≥ ftarget} , (B.15)

ΛER
3∗ :=

{
λ⃗b ∈ Λb,base : c

(
(λ⃗m, λ⃗b), (λ⃗m, λ⃗b), F

ER
int | tcut

)
= min

λ⃗′
b∈Λb,base, t

′
cut∈Tcut

c
(
(λ⃗m, λ⃗

′
b), (λ⃗m, λ⃗b), F

ER
int | t′cut

)}
. (B.16)

Since the parameter space of interest Λb is already two-dimensional, we do not plot the surface
showing the minimum required backbone fidelity. Also, for λ⃗b ∈ ΛER

3∗ , the maximum teleportation
rate is given by

RER
3 (λ⃗b) := Rint

(
p0m, tcoh, pb | max(TER

3 (λ⃗b))
)
, where (B.17)

TER
3 (λ⃗b) := {tcut ∈ Tcut : E

(
FER

int (λ⃗m, λ⃗b | tcut)
)
≥ ftarget} . (B.18)

Further, for the QR case, the corresponding sets are respectively given by

ΛQR
3+ := {λ⃗b ∈ Λb : max

t′cut∈Tcut
E
(
FQR

int (λ⃗m, λ⃗
′
b | t′cut)

)
≥ ftarget} , (B.19)

ΛQR
3∗ :=

{
λ⃗b ∈ Λb,base : c

(
(λ⃗m, λ⃗b), (λ⃗m, λ⃗b), F

QR
int | tcut

)
= min

λ⃗′
b∈Λb,base, t

′
cut∈Tcut

c
(
(λ⃗m, λ⃗

′
b), (λ⃗m, λ⃗b), F

QR
int | t′cut

)}
. (B.20)

For λ⃗b ∈ ΛQR
3+ , the maximum teleportation rate is given by

RQR
3 (λ⃗b) := Rint

(
p0m, tcoh, pb | max(TQR

3 (λ⃗b))
)
, where (B.21)

TQR
3 (λ⃗b) := {tcut ∈ Tcut : E

(
FER

int (λ⃗m, λ⃗b | tcut)
)
≥ ftarget} . (B.22)

Appendix B.3. Reformulation of Q4

In Q2 and Q3, we assess whether teleportation is feasible in the IN by fixing the hardware
parameter values of each segment (metropolitan or backbone) at their respective optimistic
values. If feasibility is established, we proceed to Q4, which focuses on identifying the minimal
hardware improvements necessary over the baseline values of both segments to achieve the target
teleportation fidelity. The desired space, optimal configurations enabling ER teleportation, and
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the corresponding rate in this case are, respectively, given by

ΛER
4+ := {(λ⃗m, λ⃗b) ∈ Λm × Λb : max

t′cut∈Tcut
E
(
FER

int (λ⃗m, λ⃗b | t′cut)
)
≥ ftarget} , (B.23)

ΛER
4∗ :=

{
(λ⃗m, λ⃗b) ∈ Λm,base × Λb,base : c

(
(λ⃗m, λ⃗b), (λ⃗m, λ⃗b), F

ER
int | tcut

)
= min

λ⃗′
m∈Λm,base, λ⃗

′
b∈Λb,base, t

′
cut∈Tcut

c
(
(λ⃗′m, λ⃗

′
b), (λ⃗m, λ⃗b), F

ER
int | t′cut

)}
. (B.24)

For (λ⃗m, λ⃗b) ∈ ΛER
4* , we further define the maximum achievable teleportation rate as

RER
4 (λ⃗m, λ⃗b) := Rint

(
p0m, tcoh, pb | max

(
TER
4 (λ⃗m, λ⃗b)

))
, where (B.25)

TER
4 (λ⃗m, λ⃗b) := {tcut ∈ Tcut : E

(
FER

int (λ⃗m, λ⃗b | tcut)
)
≥ ftarget} . (B.26)

For QR teleportation, these required sets are given by

ΛQR
4+ := {(λ⃗m, λ⃗b) ∈ Λm × Λb : max

t′cut∈Tcut
E
(
FQR

int (λ⃗m, λ⃗b | t′cut)
)
≥ ftarget} , (B.27)

ΛQR
4∗ :=

{
(λ⃗m, λ⃗b) ∈ Λm,base × Λb,base : c

(
(λ⃗m, λ⃗b), (λ⃗m, λ⃗b), F

QR
int | tcut

)
= min

λ⃗′
m∈Λm,base, λ⃗

′
b∈Λb,base, t

′
cut∈Tcut

c
(
(λ⃗′m, λ⃗

′
b), (λ⃗m, λ⃗b), F

QR
int | t′cut

)}
, (B.28)

and the maximum allowed rate for a representative point from the optimisation algorithm,
(λ⃗m, λ⃗b) ∈ ΛQR

4∗ , is given by

RQR
4 (λ⃗m, λ⃗b) := Rint

(
p0m, tcoh, pb | max

(
TQR
4 (λ⃗m, λ⃗b)

))
, where (B.29)

TQR
4 (λ⃗m, λ⃗b) := {tcut ∈ Tcut : E

(
FER

int (λ⃗m, λ⃗b | tcut)
)
≥ ftarget} . (B.30)
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Appendix C. Calculation of Individual Terms in the Expression of Teleportation
Rate in the Intercity Network

In this appendix, we calculate the individual terms of (42) in the expression of teleportation
rate given by (33). Specifically, we calculate the terms defined in (43) and (44).
Appendix C.1. Calculation of Individual Terms

To calculate the individual expectations in (43), we use the ranges of M1, M2, and mb from
Tab. 4. We also introduce the following shorthand for x, y, s ∈ [0, 1), z ∈ N ∪ {∞}, q, r ∈ Q, and
α, σ, κ ∈ R:

Πc(x, y, q, α, l, u) :=
u∑
i=l

xiy⌈iq−α⌉ , Πf (x, y, q, α, l, u) :=
u∑
i=l

xiy⌊iq−α⌋ , (C.1)

Πcc(x, y, q, α, σ, l, u) :=
u∑
i=l

xiy⌈iq−α⌉+⌈iq−σ⌉ , Πcf (x, y, q, α, σ, l, u) :=
u∑
i=l

xiy⌈iq−α⌉+⌊iq−σ⌋ , (C.2)

Πff (x, y, q, α, σ, l, u) :=
u∑
i=l

xiy⌊iq−α⌋+⌊iq−σ⌋ , (C.3)

Θc(x, y, q, α, l, u) :=
u∑
i=l

ixiy⌈iq−α⌉ , Θf (x, y, q, α, l, u) :=
u∑
i=l

ixiy⌊iq−α⌋ . (C.4)

Θcc(x, y, q, α, σ, l, u) :=
u∑
i=l

ixiy⌈iq−α⌉+⌈iq−σ⌉, Θcf (x, y, q, α, σ, l, u) :=
u∑
i=l

ixiy⌈iq−α⌉+⌊iq−σ⌋, (C.5)

Θff (x, y, q, α, σ, l, u) :=
u∑
i=l

⌊iq−α⌋xiy⌊iq−α⌋+⌊iq−σ⌋ , (C.6)

Γ(x, y, s, q, α, l, u) :=
u∑
i=l

xiy⌊iq⌋s⌊iq−α⌋ , (C.7)

∆(x, y, s, r, κ, q, l, u) :=
u∑
i=l

xi
⌊ir⌋∑

j=⌈ir−κ⌉

yjs⌈jq⌉ . (C.8)

For u = ∞, the infinite sums admit the following closed-form expressions:

Πc(x, y, q, α, l,∞) =
Πc(x, y, q, α, l, l+z

∗−1)

1− (xyq)z∗
, (C.9)

Πf (x, y, q, α, l,∞) =
Πf (x, y, q, α, l, l+z

∗−1)

1− (xyq)z∗
, (C.10)

Πcc(x, y, q, α, σ, l,∞) =
Πcc(x, y, q, α, σ, l, l+z

∗−1)

1− (xy2q)z∗
, (C.11)

Πcf (x, y, q, α, σ, l,∞) =
Πcf (x, y, q, α, σ, l, l+z

∗−1)

1− (xy2q)z∗
, (C.12)

Πff (x, y, q, α, σ, l,∞) =
Πff (x, y, q, α, σ, l, l+z

∗−1)

1− (xy2q)z∗
, (C.13)

Θc(x, y, q, α, l,∞) =
Θc(x, y, q, α, l, l+z

∗−1)

1− (xyq)z∗
+
z∗(xyq)z

∗
Πc(x, y, q, α, l, l+z

∗−1)

(1− (xyq)z∗)2
, (C.14)

Θf (x, y, q, α, l,∞) =
Θf (x, y, q, α, l, l+z

∗−1)

1− (xyq)z∗
+
z∗(xyq)z

∗
Πf (x, y, q, α, l, l+z

∗−1)

(1− (xyq)z∗)2
, (C.15)
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Θcc(x, y, q, α, σ, l,∞)=
Θcc(x, y, q, α, σ, l, l+z

∗−1)

1− (xy2q)z∗
+
z∗(xy2q)z

∗
Πcc(x, y, q, α, σ, l, l+z

∗−1)

(1− (xy2q)z∗)2
,

(C.16)

Θcf (x, y, q, α, σ, l,∞)=
Θcf (x, y, q, α, σ, l, l+z

∗−1)

1− (xy2q)z∗
+
z∗(xy2q)z

∗
Πcf (x, z, q, α, σ, l, l+z

∗−1)
(1− (xy2q)z∗)2

,

(C.17)

Θff (x, y, q, α, σ, l,∞) =
Θff (x, y, q, α, σ, l, l+z

∗−1)

1− (xy2q)z∗
+
z∗q(xy2q)z

∗
Πff (x, y, q, α, σ, l, l+z

∗−1)

(1− (xy2q)z∗)2
,

(C.18)

Γ(x, y, s, q, α, l,∞) =
Γ(x, y, s, q, α, l, l+z∗−1)

1−(xyqsq)z∗
(C.19)

∆(x, y, s, r, κ, q, l,∞) =
∆(x, y, s, r, κ, q, l, l+z̄−1)

1−(xyrsrq)z̄
, (C.20)

with
z∗ = z∗(q) := min{z ∈ N : zq ∈ N} . (C.21)

z̄ = z̄(r, q) := min
{
z ∈ N : zr, zrq ∈ N

}
. (C.22)

For derivations, see Appendix C.2. We also use the following identity in our calculations:
n∑

i=1

ixi =
x−(n+ 1)xn+1+nxn+2

(1− x)2
, for x ̸= 1 . (C.23)

Now,

E
(
Z1A+

1

)
= E

(
(Xmax+tmsg)1A+

1

)
(C.24)

=
∞∑

m1=⌈tb/tm⌉

m1∑
m2=max(1,

⌈m1−t′cut/tm⌉)

⌊m1tm/tb⌋∑
mb=max(1,

⌈(m1tm−t′cut)/tb⌉)

(m1tm+tmsg)P(X1=m1tm)P(X2=m2tm)P(Xb=mbtb) (C.25)

=
∞∑

m1=⌈tb/tm⌉

m1∑
m2=max(1,

⌈m1−t′cut/tm⌉)

⌊m1tm/tb⌋∑
mb=max(1,

⌈(m1tm−t′cut)/tb⌉)

(m1tm+tmsg)pm(1−pm︸ ︷︷ ︸
=:qm

)m1−1 pm(1−pm︸ ︷︷ ︸
qm

)m2−1 pb(1−pb︸ ︷︷ ︸
=:qb

)mb−1

(C.26)

=
(p2mpb

q2mqb

)
︸ ︷︷ ︸

=: δ

∞∑
m1=⌈tb/tm⌉

(m1tm+tmsg) qm
m1

m1∑
m2=max(1,

⌈m1−t′cut/tm⌉)

qm2
m

⌊m1tm/tb⌋∑
mb=max(1,

⌈(m1tm−t′cut)/tb⌉)

qmb
b (C.27)

(i)
= δ

( 1+⌊t′cut/tm⌋∑
m1=⌈tb/tm⌉

(m1tm+tmsg)q
m1
m

m1∑
m2=1

qm2
m

⌊m1tm/tb⌋∑
mb=1

qmb
b

+

⌊(tb+t′cut)/tm⌋∑
m1=2+⌊t′cut/tm⌋

(m1tm+tmsg)q
m1
m

m1∑
m2=⌈m1−t′cut/tm⌉

qm2
m

⌊m1tm/tb⌋∑
mb=1

qmb
b

+
∞∑

m1=1+⌊(tb+t′cut)/tm⌋

(m1tm+tmsg)q
m1
m

m1∑
m2=⌈m1−t′cut/tm⌉

qm2
m

⌊m1tm/tb⌋∑
mb=⌈(m1tm−t′cut)/tb)⌉

qmb
b

)
(C.28)
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=
δ

pmpb

( 1+⌊t′cut/tm⌋∑
m1=⌈tb/tm⌉

(m1tm+tmsg)q
m1
m

(
qm−qm1+1

m

)(
qb−q⌊m1tm/tb⌋+1

b

)
︸ ︷︷ ︸

=:T
(1)

1+

+

⌊(tb+t′cut)/tm⌋∑
m1=2+⌊t′cut/tm⌋

(m1tm+tmsg)q
m1
m

(
q⌈m1−t′cut/tm⌉
m −qm1+1

m

)(
qb−q⌊m1tm/tb⌋+1

b

)
︸ ︷︷ ︸

=:T
(2)

1+

+
∞∑

m1=1+⌊(tb+t′cut)/tm)⌋

(m1tm+tmsg)q
m1
m

(
q⌈m1−t′cut/tm⌉
m −qm1+1

m

)(
q
⌈(m1tm−t′cut)/tb⌉
b −q⌊m1tm/tb⌋+1

b

)
(C.29)

=
δ

pmpb

(
T

(1)

1+ +T
(2)

1+

)
+
δ
(
q
−⌊t′cut/tm⌋
m − qm

)
pmpb

(
tm

∞∑
m1=1+⌊(tb+t′cut)/tm)⌋

m1q
2m1
m q

⌈m1tm/tb−t′cut/tb⌉
b

− tmqb

∞∑
m1=1+⌊(tb+t′cut)/tm)⌋

m1q
2m1
m q

⌊m1tm/tb⌋
b + tmsg

∞∑
m1=1+⌊(tb+t′cut)/tm)⌋

q2m1
m q

⌈m1tm/tb−t′cut/tb⌉
b

− tmsgqb

∞∑
m1=1

q2m1
m q

⌊m1tm/tb⌋
b

)
(C.30)

(ii)
=

δ

pmpb

(
T

(1)

1+ +T
(2)

1+

)
+
δ
(
q
−⌊t′cut/tm⌋
m − qm

)
pmpb

(
tmΘc

(
q2m, qb,

tm
tb
,
t′cut

tb
, 1+

⌊
tb+t

′
cut

tm

⌋
,∞
)

− tmqb Θf

(
q2m, qb,

tm
tb
, 0, 1+

⌊
tb+t

′
cut

tm

⌋
,∞
)
+tmsgΠc

(
q2m, qb,

tm
tb
,
t′cut

tb
, 1+

⌊
tb+t

′
cut

tm

⌋
,∞
)

− tmsgqb Πf

(
q2m, qb,

tm
tb
, 0, 1+

⌊
tb+t

′
cut

tm

⌋
,∞
))

(C.31)

(iii)
=

δ

pmpb

(
T

(1)

1+ +T
(2)

1+

)
+
δ
(
q
−⌊t′cut/tm⌋
m −qm

)
pmpb

(
tm

( 1

1−(q2mq
tm/tb
b )m∗

Θc

(
q2m, qb,

tm
tb
,
t′cut

tb
, 1+

⌊
tb + t′cut

tm

⌋
,

⌊
tb + t′cut

tm

⌋
+m∗)

+
m∗(q2mq

tm/tb
b )m

∗(
1−(q2mq

tm/tb
b )m∗)2Πc(q

2
m, qb,

tm
tb
,
t′cut

tb
, 1+

⌊
tb + t′cut

tm

⌋
,

⌊
tb + t′cut

tm

⌋
+m∗)

)
− tmqb

( 1

1−(q2mq
tm/tb
b )m∗

Θf (q
2
m, qb,

tm
tb
, 0, 1+

⌊
tb + t′cut

tm

⌋
,

⌊
tb + t′cut

tm

⌋
+m∗)

+
m∗(q2mq

tm/tb
b )m

∗(
1−(q2mq

tm/tb
b )m∗)2Πf (q

2
m, qb,

tm
tb
, 0, 1+

⌊
tb + t′cut

tm

⌋
,

⌊
tb + t′cut

tm

⌋
+m∗)

)
+

tmsg

1−(q2mq
tm/tb
b )m∗

Πc

(
q2m, qb,

tm
tb
,
t′cut

tb
, 1+

⌊
tb + t′cut

tm

⌋
,

⌊
tb + t′cut

tm

⌋
+m∗)

− tmsgqb

1−(q2mq
tm/tb
b )m∗

Πf

(
q2m, qb,

tm
tb
, 0, 1+

⌊
tb + t′cut

tm

⌋
,

⌊
tb + t′cut

tm

⌋
+m∗)) . (C.32)

Note that in (i), we have split the range of m1 into three sets: ⌈tb/tm⌉≤m1≤ 1+⌊t′cut/tm⌋,
2+⌊t′cut/tm⌋≤m1≤⌊(tb+t′cut)/tm⌋, and m1≥1+⌊(tb+t′cut)/tm⌋, which simplifies the corresponding
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ranges of m2 and mb. In (ii), we have used the definitions of Πc, Πf , Θc, and Θf from (C.1)
and (C.4), and z∗(tm/tb)= tb/gcd(tm, tb)=m∗. Lastly, in (iii), we use the closed-form expressions
for the infinite sums over m1, which exploits the geometric nature of these sums. The derivation
is provided in Appendix C.2.

Here onwards, by using the definitions of Πx, and Θx, where x ∈ {c, f, cc, cf, ff} from (C.1),
(C.2), (C.3), (C.4), (C.5) and (C.6), we evaluate the following terms. On A+

b , we have

E
(
Z1A+

b

)
= E

(
(Xmax+tmsg)1A+

b

)
(C.33)

=

(
p2mpb

(1−pm)2(1−pb)

)
︸ ︷︷ ︸

δ

∞∑
mb=1

(mbtb+tmsg)(1−pb︸ ︷︷ ︸
qb

)mb
( ⌊mbtb/tm⌋∑

m1=max(1,
⌈(mbtb−t′cut)/tm⌉)

(1−pm︸ ︷︷ ︸
qm

)m1

)2
(C.34)

= δ
∞∑

mb=1

(mbtb+tmsg) q
mb
b

( ⌊mbtb/tm⌋∑
m1=max(1,

⌈(mbtb−t′cut)/tm⌉)

qm1
m

)2

(C.35)

=
δ

p2m

⌊(tm+t′cut)/tb⌋∑
mb=1

(mbtb + tmsg)q
mb
b

(
qm−q⌊mbtb/tm⌋+1

m

)2
︸ ︷︷ ︸

=:Tb+

+
δ

p2m

∞∑
mb=1+⌊(tm+t′cut)/tb⌋

(mbtb+tmsg)q
mb
b

(
q⌈(mbtb−t′cut)/tm⌉
m −q⌊mbtb/tm⌋+1

m

)2
(C.36)

=Tb+ +
δtb
p2m

( ∞∑
mb=1+⌊(tm+t′cut)/tb⌋

mbq
mb
b q2⌈(mbtb−t′cut)/tm⌉

m + q2m

∞∑
mb=1+⌊(tm+t′cut)/tb⌋

mbq
mb
b q2⌊mbtb/tm⌋

m

− 2qm

∞∑
mb=1+⌊(tm+t′cut)/tb⌋

mbq
mb
b q⌈(mbtb−t′cut)/tm⌉+⌊mbtb/tb⌋

m

)
+
δtmsg

p2m

( ∞∑
mb=1+⌊(tm+t′cut)/tb⌋

qmb
b q2⌈(mbtb−t′cut)/tm⌉

m + q2m

∞∑
mb=1+⌊(tm+t′cut)/tb⌋

qmb
b q2⌊mbtb/tm⌋

m

− 2qm

∞∑
mb=1+⌊(tm+t′cut)/tb⌋

qmb
b q⌈(mbtb−t′cut)/tm⌉+⌊mbtb/tb⌋

m

)
(C.37)

=Tb+ +
δtb
p2m

(
Θc

(
qb, q

2
m,
tb
tm
,
t′cut

tm
, 1+

⌊
tm+t′cut

tb

⌋
,∞
)
+ q2m Θf

(
qb, q

2
m,
tb
tm
, 0, 1+

⌊
tm+t′cut

tb

⌋
,∞
)

− 2qm Θcf

(
qb, qm,

tb
tm
,
t′cut

tm
, 0, 1+

⌊
tm+t′cut

tb

⌋
,∞
))

+
δtmsg

p2m

(
Πc

(
qb, q

2
m,
tb
tm
,
t′cut

tm
, 1+

⌊
tm+t′cut

tb

⌋
,∞
)
+ q2m Πf

(
qb, q

2
m,
tb
tm
, 0, 1+

⌊
tm+t′cut

tb

⌋
,∞
)

− 2qm Πcf

(
qb, qm,

tb
tm
,
t′cut

tm
, 0, 1+

⌊
tm+t′cut

tb

⌋
,∞
))

(C.38)
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(i)
=Tb+ +

δtb
p2m

(
1

1−
(
qbq

2tb/tm
m

)m∗tm/tb
Θc

(
qb, q

2
m,
tb
tm
,
t′cut

tm
, 1+

⌊
tm+t′cut

tb

⌋
,

⌊
tm+t′cut

tb

⌋
+
m∗tm
tb

)
+
m∗tm
tb

(
qbq

2tb/tm
m

)m∗tm/tb(
1−
(
qbq

2tb/tm
m

)m∗tm/tb
)2Πc

(
qb, q

2
m,
tb
tm
,
t′cut

tm
, 1+

⌊
tm+t′cut

tb

⌋
,

⌊
tm+t′cut

tb

⌋
+
m∗tm
tb

)
+ q2m

( 1

1−
(
qbq

2tb/tm
m

)m∗tm/tb
Θf

(
qb, q

2
m,
tb
tm
, 0, 1+

⌊
tm+t′cut

tb

⌋
,

⌊
tm+t′cut

tb

⌋
+
m∗tm
tb

)
+
m∗tm
tb

qbq
2tb/tm
m

)m∗tm/tb(
1−
(
qbq

2tb/tm
m

)m∗tm/tb
)2Πf

(
qb, q

2
m,
tb
tm
, 0, 1+

⌊
tm+t′cut

tb

⌋
,

⌊
tm+t′cut

tb

⌋
+
m∗tm
tb

))
− 2qm

( 1

1−
(
qbq

2tb/tm
m

)m∗tm/tb
Θcf

(
qb, qm,

tb
tm
,
t′cut

tm
, 0, 1+

⌊
tm+t′cut

tb

⌋
,

⌊
tm+t′cut

tb

⌋
+
m∗tm
tb

)
+
m∗tm
tb

(
qbq

2tb/tm
m

)m∗tm/tb(
1−
(
qbq

2tb/tm
m

)m∗tm/tb
)2Πcf

(
qb, qm,

tb
tm
,
t′cut

tm
, 0, 1+

⌊
tm+t′cut

tb

⌋
,

⌊
tm+t′cut

tb

⌋
+
m∗tm
tb

)))
+
δtmsg

p2m

(
1

1−
(
qbq

2tb/tm
m

)m∗tm/tb
Πc

(
qb, q

2
m,
tb
tm
,
t′cut

tm
, 1+

⌊
tm+t′cut

tb

⌋
,

⌊
tm+t′cut

tb

⌋
+
m∗tm
tb

)
+ q2m

1

1−
(
qbq

2tb/tm
m

)m∗tm/tb
Πf

(
qb, q

2
m,
tb
tm
, 0,1+

⌊
tm+t′cut

tb

⌋
,

⌊
tm+t′cut

tb

⌋
+
m∗tm
tb

)
− 2qm

1

1−
(
qbq

2tb/tm
m

)m∗tm/tb
Πcf

(
qb, qm,

tb
tm
,
t′cut

tm
, 0, 1+

⌊
tm+t′cut

tb

⌋
,

⌊
tm+t′cut

tb

⌋
+
m∗tm
tb

))
. (C.39)

Note that in (i), we used z∗(tb/tm)= tm/gcd(tm, tb)=m∗tm/tb.
On A+

1 A
+
2 , we observe that

E
(
Z1A+

1 A+
2

)
=

(
p2mpb

(1−pm)2(1−pb)

)
︸ ︷︷ ︸

δ

∞∑
m1=⌈tb/tm⌉

(m1tm+tmsg)(1−pm︸ ︷︷ ︸
qm

)m1(1−pm︸ ︷︷ ︸
qm

)m1

⌊m1tm/tb⌋∑
mb=max(1,

⌈(m1tm−t′cut)/tb⌉)

(1−pb︸ ︷︷ ︸
qb

)mb (C.40)

= δ

∞∑
m1=⌈tb/tm⌉

(m1tm+tmsg)q
2m1
m

⌊m1tm/tb⌋∑
mb=max(1,

⌈(m1tm−t′cut)/tb⌉)

qmb
b (C.41)

=
δ

pb

⌊(tb+t′cut)/tm⌋∑
m1=⌈tb/tm⌉

(m1tm+tmsg)q
2m1
m

(
qb−q⌊m1tm/tb⌋+1

b

)
︸ ︷︷ ︸

=:T1+2+

+
δ

pb

∞∑
m1=1+⌊(tb+t′cut)/tm⌋

(m1tm+tmsg)q
2m1
m

(
q
⌈(m1tm−t′cut)/tb⌉
b −q⌊m1tm/tb⌋+1

b

)
(C.42)

= T1+2+ +
δtm
pb

(
Θc

(
q2m, qb,

tm
tb
,
t′cut

tb
, 1+

⌊
tb+t

′
cut

tm

⌋
,∞
)
− qb Θf

(
q2m, qb,

tm
tb
, 0, 1+

⌊
tb+t

′
cut

tm

⌋
,∞
))

+
δtmsg

pb

(
Πc

(
q2m, qb,

tm
tb
,
t′cut

tb
, 1+

⌊
tb+t

′
cut

tm

⌋
,∞
)
− qb Πf

(
q2m, qb,

tm
tb
, 0, 1+
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where, in (i), we have used z∗(tm/tb)=m∗.
On A+

1 A
+
b , it follows that
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where in (i), we have used the notation ξ :=⌊(tm + t′cut)/(m
∗tm)⌋.
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Lastly, on A+
1 A

+
2 A

+
b , we have
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By plugging (C.32), (C.39), (C.44), (C.49), and (C.53) in (43), we obtain the value of
E(Z1Y=1). Next, to calculate the individual expectations of (44), we observe the ranges of M1,
M2, and mb on A−

i as summarised in Table 5. On A−
12, we have
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where we have used the definition of Πc, Πf , Θc, and Θf from (C.1) and (C.4). Also, note that
we have changed the order of summation in (i). In (ii) and (iii), we recalled that z∗(tm/tb)=m∗,
and applied the identity (C.23).
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1b, we observe that
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where we recalled, in (i), that z∗(tb/tm)=m∗tm/tb.
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(
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Θff

(
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, 0,
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,

⌈
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⌉
,

⌈
tm+tcut
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⌉
+
m∗tm
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−1
)

+
m∗tm
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tb
tm

(
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m
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qbq
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m
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)2Πff

(
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,

⌈
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⌉
,

⌈
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tb

⌉
+
m∗tm
tb
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.

(C.79)

Note that we have changed the order of summation in (i). We used in (ii) and (iii) that
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z∗(tm/tb)=m
∗ and z∗(tb/tm)=m∗tm/tb, respectively, and applied the identity (C.23).

On A−
12A

−
1b, we have

E
(
Z1A−

12A
−
1b

)
= E

(
(Xmin+tcut)1A−

12A
−
1b

)
(C.80)

=

(
p2mpb

(1−pm)2(1−pb)

)
︸ ︷︷ ︸

δ

∞∑
k=1

(km∗tm+tcut)(1−pm︸ ︷︷ ︸
qm

)km
∗
(1−pb︸ ︷︷ ︸

qb

)km
∗tm/tb

∞∑
m1=km∗+⌈tcut/tm⌉

(1−pm︸ ︷︷ ︸
qm

)m1 (C.81)

= δ

∞∑
k=1

(km∗tm+tcut)
(
qm

∗

m q
m∗tm/tb
b

)k qkm∗+⌈tcut/tm⌉
m

1−qm
(C.82)

=
δq

⌈tcut/tm⌉
m

pm

∞∑
k=1

(km∗tm + tcut)
(
q2m

∗

m q
m∗tm/tb
b︸ ︷︷ ︸
β

)k (C.83)

=
δq

⌈tcut/tm⌉
m

pm

(
m∗tm

∞∑
k=1

kβk + tcut

∞∑
k=1

βk
)

(C.84)

=
δq

⌈tcut/tm⌉
m β

pm(1−β)

(m∗tm
1−β

+ tcut

)
(C.85)

Further, on A−
b1A

−
b2,

E
(
Z1A−

b1A
−
b2

)
= E

(
(Xmin+tcut)1A−

b1A
−
b2

)
(C.86)

=

(
p2mpb

(1−pm)2(1−pb)

)
︸ ︷︷ ︸

δ

∞∑
m1=1
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(
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qm

)2m1
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(
1−pb︸ ︷︷ ︸

qb

)mb (C.87)

=
δ
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(m1tm+tcut)q
2m1
m q

⌈(m1tm+tcut)/tb⌉
b (C.88)

=
δ
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(
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(
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)
+ tcutΠc

(
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(C.89)

(i)
=

δ

pb

(
tm

(Θc(q
2
m, qb, tm/tb,−tcut/tb, 1,m

∗)

1−
(
q2mq

tm/tb
b

)m∗ +m∗(q2mqtm/tb
b

)m∗Πc(q
2
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(
q2mq

tm/tb
b

)m∗)2 )
+ tcutΠc(q

2
m, qb, tm/tb,−tcut/tb, 1,m

∗)

)
, (C.90)

where, in (i), we recall that z∗(tm/tb)=m∗. Similarly, on A−
1 A

−
2 ,

E
(
Z1A−

1 A−
2

)
= E

(
(Xmin+tcut)1A−

1 A−
2

)
(C.91)

=

(
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)
︸ ︷︷ ︸
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(
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∞∑
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(
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qm

)2m1 (C.92)

=
δ

1−q2m

∞∑
mb=1

(mbtb + tcut)q
mb
b q2⌈(mbtb+tcut)/tm⌉

m (C.93)
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=
δ

1−q2m

(
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(
qb, q

2
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, 1,∞

)
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(
qb, q

2
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(C.94)

(i)
=

δ

1−q2m

(
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(Θc(qb, q
2
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m
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tb

(
qbq

2tb/tm
m

)m∗tm/tb Πc(qb, q
2
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m
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2
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1−
(
qbq

2tb/tm
m

)m∗tm/tb

)
, (C.95)

where, in (i), we recall that z∗(tb/tm)=m∗tm/tb. Finally, on A−
1 A

−
b , we have

E
(
Z1A−

1 A−
b

)
= E

(
(Xmin+tcut)1A−

1 A−
b

)
(C.96)

=

(
p2mpb

(1−pm)2(1−pb)

)
︸ ︷︷ ︸

δ
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(m2tm+tcut)(1−pm︸ ︷︷ ︸
qm

)m2

∞∑
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)km
∗
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)km
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(C.97)

= δ
∞∑
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(m2tm+tcut)q
m2
m

∞∑
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(
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∗

m q
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b︸ ︷︷ ︸
γ

)k
(C.98)

=
δ

1−γ

∞∑
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(m2tm+tcut)q
m2
m γ⌈(m2tm+tcut)/(m∗tm)⌉ (C.99)

=
δ
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1
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)
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(
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, 1,∞

))
(C.100)

(i)
=

δ

1−γ

(
tm

(Θc(qm, γ, 1/m
∗,−tcut/(m

∗tm), 1,m
∗)

1−
(
qmγ1/m

∗)m∗
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∗tm), 1,m
∗)(

1−
(
qmγ1/m

∗)m∗)2 )
+tcut

Πc(qm, γ, 1/m
∗,−tcut/(m
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1−
(
qmγ1/m

∗)m∗

)
,

(C.101)

where in (i), we note that z∗(1/m∗)=m∗ and
(
qmγ

1/m∗)m∗
=β. By plugging (C.63), (C.69), (C.79),

(C.85), (C.90), (C.95), and (C.101) in (44), we obtain the value of E(Z1Y=0). Thus, by plugging
these in (43), (44), and (42) and subsequently in (33), we obtain the teleportation rate in the IN.

Appendix C.2. Closed-form Expressions for Relevant Infinite Sums

In this appendix, we derive closed-form expressions for infinite sums in (C.9),(C.10),(C.14),(C.15),
which facilitates exact computations of these quantities. We first consider the following term with
x, y ∈ [0, 1), q ∈ Q, and α ∈ R:

Πc(x, y, q, α, l,∞) =
∞∑
i=l

xiy⌈iq−α⌉ . (C.102)

We now define
z∗(q) = min{z ∈ N : zq ∈ N} . (C.103)
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For brevity, we often suppress the argument q of z∗ when it is clear from the context. Observing
that

l+2z∗−1∑
i=l+z∗

xiy⌈iq−α⌉ = (xyq)z
∗
l+z∗−1∑

i=l

xiy⌈iq−α⌉ = (xyq)z
∗
Πc(x, y, q, α, l, l+z

∗−1) , (C.104)

we can rewrite (C.102) as

Πc(x, y, q, α, l,∞) =
∞∑
j=0

(xyq)jz
∗
l+z∗−1∑

i=l

xiy⌈iq−α⌉ =
Πc(x, y, q, α, l, l+z

∗−1)

1− (xyq)z∗
. (C.105)

Similarly, we obtain the closed-form expressions for Πf ,Πcc,Πcf and Πff , introduced in (C.1),
(C.2), and (C.3).

Next, we consider

Θc(x, y, q, α, l,∞) =
∞∑
i=l

ixiy⌈iq−α⌉ . (C.106)

Similar to (C.104), we observe that
l+2z∗−1∑
i=l+z∗

ixiy⌈iq−α⌉ = (xyq)z
∗(
Θc(x, y, q, α, l, l+z

∗−1) + z∗Πc(x, y, q, α, l, l+z
∗−1)

)
. (C.107)

Therefore,

Θc(x, y, q, α, 1,∞) =
∞∑
j=0

(xyq)jz
∗
l+z∗−1∑

i=l

ixiy⌈iq−α⌉ +
∞∑
j=1

jz∗(xyq)jz
∗
l+z∗−1∑

i=l

xiy⌈iq−α⌉ (C.108)

=
Θc(x, y, q, α, l, l+z

∗−1)

1− (xyq)z∗
+
z∗(xyq)z

∗
Πc(x, y, q, α, l, l+z

∗−1)

(1− (xyq)z∗)2
. (C.109)

Similarly, we can obtain closed-form expressions for the rest of the terms in (C.4), (C.5), and
(C.6). Finally, for the following term, with x, y, s ∈ [0, 1), r, q ∈ Q, and κ ∈ R:

∆(x, y, s, r, κ, q, l,∞) =
∞∑
i=l

xi
⌊ir⌋∑

j=⌈ir−κ⌉

yjs⌈jq⌉ , (C.110)

we define
z̄(r, q) = min

{
z ∈ N : zr, zrq ∈ N

}
(C.111)

Suppressing the arguments q and r of z̄ for brevity, we observe that
l+2z̄−1∑
i=l+z̄

xi
⌊ir⌋∑

j=⌈ir−κ⌉

yjs⌈jq⌉ = (xyrsrq)z̄
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(C.112)
Thus, (C.110) can be expressed as

∆(x, y, s, r, κ, q, l,∞) =
∞∑
n=1

(xyrsrq)nz̄
l+z̄−1∑
i=l

xi
⌊ir⌋∑

j=⌈ir−κ⌉

yjs⌈jq⌉ =
∆(x, y, s, r, κ, q, l, l+z̄−1)

1−(xyrsrq)z̄
.

(C.113)
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Appendix D. Calculation of Individual Terms in the Expression of Expected
Teleportation Fidelity in the Intercity Network

Appendix D.1. Calculations for individual terms in U(v, α)

Here, we calculate the individual terms of (90), which facilitates the calculation of U1(v) and
U2(v) via (91). On A+

12

E(e−v((α−1)X1−X2)1A+
12
)

=
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(1−pm)2(1−pb)
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where we used the definitions of ∆ and Πf from (C.8) and (C.1). In (i), we used z̄(1, tm/tb)=m∗

and z∗(tm/tb)=m∗.
On A1b+ , we have
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where, in (i), we used z̄(tm/tb, tb/tm)=m∗ and z∗(tm/tb)=m∗.
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On A+
b , we have
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where we used z∗(tb/tm)=m∗tm/tb in (i).
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where we recall that z∗(tm/tb)=m∗ in (i).
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Appendix D.2. Calculations of individual terms in U3(v)

In this section, we calculate the individual terms of (74). The first expected value on A−
12 is
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where in (i), we used z∗(tm/tb)=m∗.
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where, in (i), we use z∗(tb/tm)=m∗tm/tb.
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m
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Γ
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,
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⌈
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⌉
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⌈
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⌉
+
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(D.61)
where we have changed the order of summation in (i). Note that, in (ii), we recall that
z∗(tm/tb)=m

∗ and z∗(tb/tm)=m∗tm/tb, respectively.
On A−

12A
−
1b, we have

E
(
e−X2/tcoh 1A−

12A
−
1b

)
=

(
p2mpb

(1−pm)2(1−pb)

)
︸ ︷︷ ︸

δ

∞∑
i=1

∞∑
m1=im∗+⌈tcut/tm⌉

e−im∗tm/tcoh(1−pm︸ ︷︷ ︸
qm

)m1(1−pm︸ ︷︷ ︸
qm

)im
∗
(1−pb︸ ︷︷ ︸

qb

)im
∗tm/tb

(D.62)

= δ
∞∑
i=1

(
e−tm/tcohqmq

tm/tb
b

)im∗
∞∑

m1=im∗+⌈tcut/tm⌉

qm1
m (D.63)

=
δq

⌈tcut/tm⌉
m

pm

∞∑
i=1

(
e−m∗tm/tcohq2m

∗

m q
m∗tm/tb
b︸ ︷︷ ︸

=: β̃

)i (D.64)

=
δq

⌈tcut/tm⌉
m β̃

pm(1−β̃)
. (D.65)

On A−
b1A

−
b2, we have

E
(
e−X1/tcoh 1A−

b1A
−
b2

)
=

(
p2mpb

(1−pm)2(1−pb)

)
︸ ︷︷ ︸

δ

∞∑
m1=1

∞∑
mb=⌈(m1tm+tcut)/tb⌉

e−m1tm/tcoh(1−pm︸ ︷︷ ︸
qm

)2m1(1−pb︸ ︷︷ ︸
qb

)mb (D.66)

= δ
∞∑

m1=1

(
qm qme

−tm/tcoh︸ ︷︷ ︸
κm

)m1

∞∑
mb=⌈(m1tm+tcut)/tb⌉

qmb
b

=
δ

pb

∞∑
m1=1

(κmqm)
m1q

⌈(m1tm+tcut)/tb⌉
b (D.67)

=
δ

pb
Πc

(
κmqm, qb,

tm
tb
,−tcut

tb
, 1,∞

)
(D.68)

(i)
=

δ

pb

Πc

(
κmqm, qb, tm/tb,−tcut/tb, 1,m

∗)
1−
(
κmqmq

tm/tb
b

)m∗ , (D.69)

where, in (i), we recall that z∗(tm/tb)=m∗.



69

On A−
1 A

−
2 , we have

E
(
e−Xb/tcoh 1A−

1 A−
2

)
=

(
p2mpb

(1−pm)2(1−pb)

)
︸ ︷︷ ︸

δ

∞∑
mb=1

∞∑
m1=⌈(mbtb+tcut)/tm⌉

e−mbtb/tcoh(1−pm︸ ︷︷ ︸
qm

)2m1(1−pb︸ ︷︷ ︸
qb

)mb (D.70)

= δ

∞∑
mb=1

(
qbe

−tb/tcoh︸ ︷︷ ︸
κb

)mb
∞∑
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q2m1
m
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1−q2m

∞∑
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m (D.71)

=
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2
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tm
, 1,∞

)
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(i)
=

δ

(1−q2m)
Πc

(
κb, q

2
m, tb/tm,−tcut/tm, 1,m

∗tm/tb
)

1−
(
κbq

2tb/tm
m

)m∗tm/tb
, (D.73)

where, in (i), we recall that z∗(tb/tm)=m∗tm/tb.
On A−

1 A
−
b , we have

E
(
e−X2/tcoh 1A−

1 A−
b

)
=

(
p2mpb

(1−pm)2(1−pb)

)
︸ ︷︷ ︸

δ

∞∑
m2=1

∞∑
k=⌈(m2tm+tcut)/(m∗tm)⌉

e−m2tm/tcoh(1−pm︸ ︷︷ ︸
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∗
(1−pm︸ ︷︷ ︸

qm

)m2(1−pb︸ ︷︷ ︸
qb

)km
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= δ
∞∑

m2=1
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qme
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)m2
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m q
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)k (D.75)

=
δ

1−γ

∞∑
m2=1

κm2
m γ⌈(m2tm+tcut)/(m∗tm)⌉ (D.76)

=
δ

1−γ
Πc

(
κm, γ,

1

m∗ ,−
tcut

m∗tm
, 1,∞

)
(D.77)

(i)
=

δ

1−γ
Πc

(
κm, γ, 1/m

∗,−tcut/(m
∗tm), 1,m

∗)
1−(κmγ1/m

∗)m∗ , (D.78)

where, in (i), we recall that z∗(1/m∗)=m∗.

Appendix E. Teleporting a mixed state using a Werner state

Lemma 2. Consider the teleportation of a data qubit in a mixed state

ρdata = pd |ϕ⟩⟨ϕ|+ (1− pd)
I2
2
, (E.1)

where pd ∈ [0, 1] is the probability weight of the pure state |ϕ⟩ and I2 is the 2× 2 identity matrix.
Suppose Alice and Bob share an entangled resource described by the Werner state

ρw = w |Φ+⟩⟨Φ+|+ (1− w)
I4
4
, (E.2)
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where |Φ+⟩ is the maximally entangled Bell state, w ∈ [0, 1] in the corresponding Werner parameter
and I2 is the 2× 2 identity matrix. Assume that each qubit is subject to decoherence modelled by
a depolarising channel Et acting as

Et(|ψ⟩⟨ψ|) = e−t/tcoh |ψ⟩⟨ψ|+
(
1− e−t/tcoh

)I2
2
, (E.3)

with coherence time tcoh and storage duration t. Further, assume that local operations are
instantaneous compared to classical communication and entanglement generation times, so that
the time for Bell measurement and application of Pauli corrections is negligible. Then, the fidelity
of the teleported qubit with respect to |ϕ⟩ is given by

Ftel =
1 + wpde

−tclass/tcoh

2
, (E.4)

where tclass denotes the classical communication time required to transmit the Pauli correction
message.

Proof. We begin with the density matrix representation of the joint state between Alice and Bob
throughout the stages of the standard teleportation protocol. The data qubit is represented as
|ϕ⟩ = a |0⟩+ b |1⟩, where a, b are complex numbers. The entanglement resource in (E.2) can be
written as a sum of the Bell states |Φ+⟩, |Φ−⟩, |Ψ+⟩, and |Ψ−⟩ as follows

ρw = p1 |Φ+⟩⟨Φ+|+ p2 |Φ−⟩⟨Φ−|+ p3 |Ψ+⟩⟨Ψ+|+ p4 |Ψ−⟩⟨Ψ−| , (E.5)

where p1 = (1 + 3w)/4 and p2 = p3 = p4 = (1− w)/4. In the following section, we investigate
teleportation using these maximally entangled states separately. We consider that Alice holds
the data qubit ρdata, as given in (E.1). We begin with the resource state |Ψ−⟩ = (|01⟩ − |10⟩)/

√
2

being shared between Alice and Bob. In this context, according to the standard convention, the
first and second qubits belong to Alice: the first qubit is the data qubit, and the second is half of
the shared entanglement resource. Bob holds the third qubit. For clarity, we explicitly write the
qubit indices in the first line, while omitting them in subsequent expressions for brevity. Following
the stages of the standard teleportation protocol with the state |Ψ−⟩, the state immediately before
Alice’s measurement is written as:

(ρdata)1 ⊗ (|Ψ−⟩⟨Ψ−|)23

=
((
pd|a|2+

1−pd
2

)
|0⟩⟨0|+pdab∗ |0⟩⟨1|+pda∗b |1⟩⟨0|+

(
pd|b|2 +

1−pd
2

)
|1⟩⟨1|

)
1

⊗ 1

2

(
|01⟩⟨01|−|01⟩⟨10|−|10⟩⟨01|+|10⟩⟨10|

)
23

(E.6)

O1−→1

2

(
pd|a|2+

1−pd
2

)(
|001⟩⟨001|−|001⟩⟨010|−|010⟩⟨001|+|010⟩⟨010|

)
+
pdab

∗

2

(
|001⟩⟨111|−|001⟩⟨100|−|010⟩⟨111|+|010⟩⟨100|

)
+
pda

∗b

2

(
|111⟩⟨001|−|111⟩⟨010|−|100⟩⟨001|+|100⟩⟨010|

)
+

1

2

(
pd|b|2+

1−pd
2

)(
|111⟩⟨111|−|111⟩⟨100|−|100⟩⟨111|+|100⟩⟨100|

)
(E.7)
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O2−→1

4

(
pd|a|2+

1−pd
2

)(
(|001⟩+|101⟩)(⟨001|+⟨101|)−(|001⟩+|101⟩)(⟨010|+⟨110|)

− (|010⟩+|110⟩)(⟨001|+⟨101|)+(|010⟩+|110⟩)(⟨010|+⟨110|)
)

+
pdab

∗

4

(
(|001⟩+|101⟩)(⟨011|−⟨111|)−(|001⟩+|101⟩)(⟨000|−⟨100|)

− (|010⟩+|110⟩)(⟨011|−⟨111|)+(|010⟩+|110⟩)(⟨000|−⟨100|)
)

+
pda

∗b

4

(
(|011⟩−|111⟩)(⟨001|+⟨101|)−(|011⟩−|111⟩)(⟨010|+⟨110|)

− (|000⟩−|100⟩)(⟨001|+⟨101|)+(|000⟩−|100⟩)(⟨010|−⟨110|)
)

+
1

4

(
pd|b|2+

1−pd
2

)(
(|011⟩−|111⟩)(⟨011|−⟨111|)−(|011⟩−|111⟩)(⟨000|−⟨100|)

− (|000⟩−|100⟩)(⟨011|−⟨111|)+(|000⟩−|100⟩)(⟨000|−⟨100|)
)

(E.8)

=
1

4
|00⟩⟨00|

((
pd|a|2+

1−pd
2

)
|1⟩⟨1|−pdab∗ |1⟩⟨0|−pda∗b |0⟩⟨1|+

(
pd|b|2+

1−pd
2

)
|0⟩⟨0|

)
+

1

4
|01⟩⟨01|

((
pd|a|2+

1−pd
2

)
|0⟩⟨0|−pdab∗ |0⟩⟨1|−pda∗b |1⟩⟨0|+

(
pd|b|2+

1−pd
2

)
|1⟩⟨1|

)
+

1

4
|10⟩⟨10|

((
pd|a|2+

1−pd
2

)
|1⟩⟨1|+pdab∗ |1⟩⟨0|+pda∗b |0⟩⟨1|+

(
pd|b|2+

1−pd
2

)
|0⟩⟨0|

)
+

1

4
|11⟩⟨11|

((
pd|a|2+

1−pd
2

)
|0⟩⟨0|+pdab∗ |0⟩⟨1|+pda∗b |1⟩⟨0|+

(
pd|b|2+

1−pd
2

)
|1⟩⟨1|

)
+ ρres (E.9)

=
1

4
|00⟩⟨00| ⊗ ZXρdataXZ︸ ︷︷ ︸

ρzx

+
1

4
|01⟩⟨01| ⊗ ZρdataZ︸ ︷︷ ︸

ρz

+
1

4
|10⟩⟨10| ⊗XρdataX︸ ︷︷ ︸

ρx

+
1

4
|11⟩⟨11| ⊗ ρdata

+ ρres , (E.10)

where ρres denotes the terms not contributing to the final state when measured in the standard
basis. The operations O1 and O2 correspond to CNOT 12 ⊗ I3 and H1 ⊗ I2 ⊗ I3, respectively,
with I denoting the identity operator and the subscripts indicating the qubits on which the gates
act. We can perform similar calculations for teleportation using the remaining three maximally
entangled states |Φ+⟩, |Φ−⟩, and |Ψ+⟩. Therefore, starting the teleportation using the state ρw
from (E.5) as the entanglement resource, to teleport the data qubit ρdata, the state of the system
immediately before Alice’s measurement is given by:

1

4
|00⟩⟨00|

(
p1ρdata + p2ρz + p3ρx + p4ρzx

)︸ ︷︷ ︸
=:ρΦ+

+
1

4
|01⟩⟨01|

(
p1ρx + p2ρzx + p3ρdata + p4ρz

)︸ ︷︷ ︸
=:ρΦ−

+
1

4
|10⟩⟨10|

(
p1ρz + p2ρdata + p3ρzx + p4ρx

)︸ ︷︷ ︸
=:ρΨ+

+
1

4
|11⟩⟨11|

(
p1ρzx + p2ρx + p3ρz + p4ρdata

)︸ ︷︷ ︸
=:ρΨ−

+ ρ′res , (E.11)

where ρ′res collects all terms not contributing to the measurement result. After Alice performs
a Bell-state measurement on the first two qubits, she communicates the outcome to Bob over
a classical channel. Based on the measurement outcome, Bob applies the appropriate Pauli
correction to recover the desired output state ρΦ+ as

ρΦ+ = XρΦ−X = ZρΨ+Z = ZXρΨ−ZX . (E.12)
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Substituting the specific probabilities for the Werner state, given by p1 = (1+3w/4) and
p2=p3=p4=(1−w/4) into (E.11), and using the identity (ρdata+ρz+ρx+ρzx)=2 I, we can express
ρΦ+ =wρdata+(1−w)I/2. However, the classical communication of the measurement outcome from
Alice to Bob takes a finite time tclass, during which the stored qubit in Bob’s memory undergoes
decoherence. Thus, the resulting teleported state is

ρtel = Etclass
(
wρdata + (1−w) I

2

)
= wpde

−tclass/tcoh |ϕ⟩⟨ϕ|+ (1−wpde−tclass/tcoh)
1

2
. (E.13)

Consequently, the teleportation fidelity is given by

Ftel = Tr(|ϕ⟩⟨ϕ| ρtel) =
1+wpde

−tclass/tcoh

2
.

Thus, we have established (E.4).
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