
Optimal Decision Making in Active Queue
Management

Sounak Kar∗, Bastian Alt†, Heinz Koeppl† and Amr Rizk‡
∗ EPFL, sounak.kar@epfl.ch

† Technical University of Darmstadt, firstname.lastname@bcs.tu-darmstadt.de
‡ University of Duisburg-Essen, amr.rizk@uni-due.de

Abstract—Active Queue Management (AQM) aims to prevent
bufferbloat and serial drops in router and switch FIFO packet
buffers that usually employ drop-tail queueing. AQM describes
methods to send proactive feedback to TCP flow sources to
regulate their rate using selective packet drops or markings.
Traditionally, AQM policies relied on heuristics to approximately
provide Quality of Service (QoS) such as a target delay for a
given flow. These heuristics are usually based on simple network
and TCP control models together with the monitored buffer
filling. A primary drawback of these heuristics is that their way
of accounting flow characteristics into the feedback mechanism
and the corresponding effect on the state of congestion are
not well understood. In this work, we show that taking a
probabilistic model for the flow rates and the dequeueing pattern,
a Semi-Markov Decision Process (SMDP) can be formulated
to obtain an optimal packet dropping policy. This policy-based
AQM, named PAQMAN, takes into account a steady-state model
of TCP and a target delay for the flows. Additionally, we
present an inference algorithm that builds on TCP congestion
control in order to calibrate the model parameters governing
underlying network conditions. Using simulation, we show that
the prescribed AQM yields comparable throughput to state-of-
the-art AQM algorithms while reducing delays significantly.

Keywords: Active Queue Management, Markov Decision Pro-
cesses.

I. INTRODUCTION

Striking a balance between the two most common metrics
of performance in IP networks, i.e., throughput (or utilization)
and delay is a fundamental problem for routing devices. Active
queue management (AQM) has evolved as a mechanism to
augment prevalent end-system protocols such as TCP to tune
the performance in terms of the said metrics. Most modern
network switches have built-in buffers, which accumulate
incoming data packets while the switch is busy processing
and transmitting processed packets to the output ports [1]. A
large buffer has the advantage that it can potentially minimize
droptail packet loss, i.e., dropping incoming packets when the
buffer is full. Understandably, this leads to higher network
utilization while causing excess buffering of packets and,
consequently, longer delays. This phenomenon is commonly
referred to as bufferbloat [2]. Using a shallow buffer alleviates
this problem, although at the expense of frequent packet drops,
which may lead to diminished throughput of TCP flows1 [4].
Evidently, the trade-off between higher utilization and lower

1In this work, we consider only TCP flows as they constitute the vast
majority of the internet traffic according to estimates such as [3].

queueing delay is a matter of policy [5], which is delineated by
the implemented AQM algorithm at the switch. The drop/admit
decision usually depends on inputs such as current buffer-
filling, packet delay history, or recent packet drop pattern.

In the last three decades, a range of algorithms have been
proposed [6], [7], [8] to address the AQM problem, i.e.,
achieving an acceptable trade-off between link utilization
and packet delay. Occasionally, these algorithms focus on
additional aspects such as scalability, robustness, or fairness;
for an extensive survey, see [9] and the references therein.
The first AQM algorithm RED [6], proposed by Floyd and
Jacobson in 1993, calculates an exponentially weighted
average queue length and, as a linear function of this average,
computes an initial packet drop probability in [0, pmax]. To
avoid serial drops, the initial probability is further transformed
into a final drop probability that takes into the account the
number of packets admitted since the last packet drop. An
incoming packet is dropped according to this probability if
the average queue length is between two threshold parameters
for queue length and dropped/admitted deterministically
otherwise. Clearly, the resulting policy depends critically on
these threshold parameters and pmax. Although RED is shown
to be fairer to bursty traffic than the classic drop tail [6], the
main challenge lies in identifying the model parameters and
there has been no consensus on the corresponding parameter
engineering process. To get around this problem, a range of
variants and extensions of RED have been proposed, which
address this issue with fairly limited success. We again refer
the reader to [9] for a thorough discussion on these algorithms.

A popular AQM algorithm that claims to have successfully
circumvented the problem of parameter engineering is
CoDel [7]. Although CoDel is driven by two input parameters,
one that signifies a target delay (at the AQM enabled node)
and a window parameter specifying how often a packet should
be dropped, their default value is hardly changed in practice.
Starting with the default value of the window parameter,
CoDel successively adapts its value until it meets the target
delay. Although claimed to be knob-free due to the prescribed
default values of the parameters under universal traffic condi-
tions, these values can be tuned to yield superior performance
for a given environment [10]. However, the analysis for the
choice of the default values under varied conditions has been
limited to minimal empirical investigations [10].

Different implementations exist for CoDel: although orig-



inally devised to drop a packet after it is already enqueued,
it can also be implemented to obtain the current queueing
delay and drop packets at the ingress depending on the
information exposed on the data plane2. Similarly, the AQM
algorithm called PIE [8] drops packets directly at the input
port. PIE calculates the drop probability of an incoming packet
by looking at the current queue-filling and the departure
rate from the queue. This further improves the processing
overhead compared to CoDel, which requires calculation of
delay per packet. Additionally, the consideration of the current
queue length to calculate the drop probability implies that
congestion is directly controlled. Although claimed to be knob-
free like CoDel, PIE actually requires default values for target
delay, drop frequency and parameters for drop probability
adaptation [10]. Further, the drop probability parameters are
adapted according to a rule that is based on judgements.
This phenomenon extends to most, if not all, popular AQM
algorithms of today [10].

In light of the above, we propose a Markov Decision
Process (MDP)-based approach to address the AQM problem,
called PAQMAN, which only requires the target delay and the
relative importance of delay violation to throughput reduction
as inputs. To detect potential congestion, PAQMAN uses the
current queue-filling, an estimate of the arrival rate as well as
estimates of the flow RTTs. We make the case that to optimally
decide on packet drops, it is necessary for an AQM algorithm
to account for such a holistic description of the system state.
In our framework, we encode the optimization goal through a
reward function that combines delay and throughput objectives
and reflects the immediate gain following a packet drop/admit
decision. Consequently, we derive an optimal policy (the AQM
algorithm) using tools from the MDP framework that take the
state transition probabilities calculated from the model and
the reward function as inputs. The policy provides the optimal
decision for every possible instance of the system state. For the
simpler case where the switch deals with a single flow having
negligible RTT, we model the packet arrival process in greater
generality, whereas a more tractable model is chosen for the
general case with multiple flows. Finally, we compare the
performance of PAQMAN with the state-of-the-art algorithm
CoDel and the classic droptail queues. Our findings show that
PAQMAN yields equivalent utilization/throughput to CoDel
while minimizing delays considerably.

It should however be noted that PAQMAN, like most
algorithms, is not universally applicable and is rather based
on specific assumptions that are not always met in practice.
This leads to following limitations for PAQMAN:

• The analytical underpinning of PAQMAN is derived
based on TCP flows using the same congestion control
algorithm.

• For TCP flows with non-negligible RTT, PAQMAN re-
quires an estimate of flow RTT, which can be obtained

2This makes CoDel simpler to implement on modern programmable data
plane devices [11].

by passive measurement in certain cases [12], [13], [14]
with considerable accuracy.

• While dealing with flows with non-negligible RTT, the
analytical derivation of PAQMAN also assumes that the
packet interarrival times can be modelled by exponential
distribution.

• PAQMAN is based on a MDP model for which solutions
suffer from the curse of dimensionality. Thus, like many
AQM algorithms, the implementation of PAQMAN for
many concurrent flows will impose memory requirement.
A lighter version that trades accuracy for ease of imple-
mentation, e.g., through neural networks, is left as future
work.

• For the multiple flows with non-negligible RTTs, the
current version of PAQMAN is trained offline and im-
plemented later.

• We do not investigate the aspect of fairness for PAQMAN
and leave it for future work.

The remainder of the paper is structured as follows: we first
an overview of the related work in Sect. II and subsequently
formulate the AQM decision problem in Sect. III. Sect. III
describes the algorithm when the switch deals with a single
flow having negligible RTT, while we discuss the general
case with non-negligible RTTs in Sect. V. Finally, we present
numerical simulation results in Sect. VI and conclude the
paper in Sect. VII.

II. RELATED WORK

AQM was developed as an additional module on top of
congestion control functions with the aim to keep the con-
gestion levels lower than traditional droptail queues. This was
achieved by sending early congestion signals based on con-
gestion indicator(s), which might include queue length, packet
arrival/departure rate, flow round-trip time, link capacity, and
number of flows. While the congestion signal was traditionally
in form of a packet drop, ECN markings also came into use
to enhance throughput. Further, the packet drop action for an
AQM can be random as against deterministic packet drops in
droptail queues. In this section, we compare these aspects of
PAQMAN to that of the first AQM algorithm RED[6], as it
formed the basis of AQM research, and the two most popular
AQM as of today: PIE [8] and CoDel [7]. Occasionally, we
also refer to variants of these AQMs.

As for congestion indicator, RED uses a moving average of
queue length. Depending on a higher and a lower threshold
parameter for queue length, an incoming packet is dropped or
admitted if the (calculated) average queue length is outside
these threshold, while, within these thresholds, the packet
is dropped according to a drop probability that is a linear
function of the average queue length. Similarly, PIE looks
at the queue length and departure rate from the queue to
calculate a drop probability, while CoDel uses the minimum
delay of dequeued packets over an observation window as
its congestion indicator. In comparison, PAQMAN uses the
current packet arrival rate and the queue length to detect
early congestion in the canonical case with one flow having
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Fig. 1: Part (a) shows how PAQMAN distinguishes between different AQM scenarios: the time until the receipt of the feedback
of drop/admit action is the transmission time between the switch and the sender via the receiver, which is approximated as
one RTT. The case with negligible feedback time (RTT) is discussed in Sect. III and the other case is taken up in Sect. V.
When traffic properties are unknown, we estimate corresponding parameters according to Sect. IV. Part (b) highlights how
AQM acts in tandem with the underlying congestion control by sending early congestion signals and thereby influencing the
sending rate to achieve a desired level of congestion.

negligible RTT. For the general case with multiple flows
having non-negligible RTT, the flow index of the incoming
packet, the time since the last decision event, and the RTTs are
additionally included in the set of congestion indicators. Thus,
we have a more holistic description of the state of the switch
under PAQMAN, allowing us to account for more uncertainties
impacting the state evolution.

In terms of packet drop action, RED can either drop ran-
domly (according to a certain probability) or deterministically
(i.e., drop or admit), depending on the average queue length.
While CoDel uses deterministic drop action, PIE always calcu-
lates a drop probability to implement its random drop action.
Similar to CoDel, PAQMAN’s drop action is deterministic.
In terms of congestion signal, packets are dropped under
RED whereas they are ECN-marked in a switch deploying
REM [15]. While we use packet drop for PAQMAN through-
out this paper, it can also be used in conjunction with ECN
marking and the corresponding changes in the derivations are
straightforward. We highlight this in part (b) of Fig. 1, where
the AQM is seen as an intermediate module between the sender
and the congestion control mechanism of the network.

The core of the AQM algorithm can be viewed as a rule
which translates the congestion indicator into the drop/admit
action or, more generally, the likelihood of the same. There are
primarily three approaches [9] to formulate this rule: heuristic-
based, control theoretic, and deterministic optimization-based.
While the early algorithms such as RED, its variants [5],
[16] and the popular algorithm CoDel follow heuristic ap-
proaches, the newer algorithms (such as PIE) adopted con-
trol theoretic framework to circumvent the judgemental as-
pects of the former approaches such as parameter tuning.
For simplicity and tractability, most of the control theo-
retic algorithms build on the Additive Increase Multiplicative
Decrease (AIMD) principle of TCP ignoring other aspects
like slow start and retransmission timeouts. Further, these
works assume a linearized fluid model of TCP proposed
in [17]. Some prominent examples under the control theoretic
approach include: Proportional-Integral [17], Proportional-

Derivative [18], Proportional-Integral-Derivative [19], and
Proportional-Integral-Enhanced [8] controller. For a thorough
comparison of the algorithms under this approach, see Table
VI-IX of [9]. Recently, an information compression approach
has been adopted in [20], where starting from the TCP fluid
model, a simpler relation between queueing delay and drop
probability is formulated. The control law here specifies the
change in drop probability to drive the delay towards a refer-
ence value. We note that the control theoretic approaches in
general require certain input parameters whose default values
are in the end set according to judgement. In comparison,
PAQMAN employs an MDP-based approach and only requires
the target delay and the relative importance of target delay
violation to reduction in throughput as input parameters.

Works that adopt MDP as their choice of tool include [21],
[22], where the authors first assume that the system dynamics
is given by a deterministic fluid model for which they set out
to perform a non-equilibrium analysis. Here, they first identify
a Markov chain that closely approximates the behaviour of the
deterministic system, i.e., estimate the transition matrix of the
chain for a given level of state-space discretization. Subse-
quently, they adopt an MDP-based approach to derive the best
policy from a set of candidate policies comprising drop-tail,
RED, or a interpolated version of these two. In comparison,
we use the MDP framework to derive the policy itself.

The MDP framework has been used directly for congestion
control as well. While our objective is to determine a packet
admission rule, the paper [23] focuses on update of congestion
window using DQN. We see that most literature in this space
uses closely-related but a different (non-binary) action space.
For example, [24] sets the transmission rates of constituent
flows in closed intervals for the next epoch, while [25]
updates the congestion window for multimedia content using
a POMDP framework. Optimal drop/admit actions were
considered in [26] in the context of anticipative congestion
control in a network of routers, where the objective is not
to waste resources on processing a packet if it is likely to be
dropped downstream.



In addition to delay-utilization trade-off, the aspects of drop
rate, jitter and fairness also gained focus in AQM literature
over the years. However, there is no standardized evaluation
criteria for AQM schemes and the authors in [27] attribute
the slow progress of AQM research to this fact. In addition
to the measures above, the authors in [9] consider scalability,
stability, responsiveness, and robustness to be crucial metrics
of performance. Scalability focuses on the feasibility of im-
plementation of an AQM algorithm as the number of flows
increases, whereas stability measures, for example, the change
in queue length as the number of flows varies. Further, the
speed of convergence is referred to as responsiveness [28]
and robustness signifies the ability of an AQM algorithm
to work under diverse network conditions. Thus, robustness
necessitates dynamic parameter tuning to suit changing traffic
loads, i.e., variation of network parameters.

Following the inclusion of varied performance measures,
RED was modified to meet the new objectives. For example,
authors in [16] introduced SRED to enhance stability,
ARED [5] used auto-tuning to increase robustness, and
FRED [29] focused on fairness. We refer the reader to Table
XIV- XXIV of [9] for a detailed comparison of the heuristic
AQM schemes that address certain aspects of performance.
Coming back to the issue of dynamic parameter tuning, the
paper [30] introduces a general parameter tuning method that
can be used in conjunction with any given AQM algorithm.
Independently of the underlying AQM algorithm, the problem
of parameter tuning is formulated in [30] as an MDP, where
the (discretized) predicted value of the congestion indicator
denotes the state of the system and the action set consists
of all possible values of the AQM parameter. Taking the
measured throughput-to-RTT ratio as the immediate reward,
the authors adopt a Q-learning approach [31] to find the
optimal AQM parameter value for a given estimate of the
congestion predictor in the next time interval.

As mentioned, delay-throughput trade-off has been the
primary objective of AQM algorithms. Later, most control the-
oretic approaches additionally focused on stability, responsive-
ness, and robustness by analyzing the transient response, the
oscillation around the target queue length, and the steady-state
error, respectively. However, fairness is usually not measured
under control theoretic as well as deterministic optimization
approaches. In comparison, we empirically evaluate PAQMAN
in terms of delay, throughput, and the rate of convergence
to steady-state behaviour. However, we do not evaluate its
performance in terms of jitter, responsiveness, scalability, or
robustness. [Todo: Fairness].

The algorithms that dominate the present-day AQM land-
scape are PIE and CoDel. They have been compared exten-
sively to each other and to some variants of RED [32], [10].
The former paper considers both performance and scalability
under multiplexing. It concludes that CoDel visibly leads to
better performance in terms of delays, while the performance
of PIE scales well for multiplexed flows. Similarly, the authors
in [10] recommend CoDel over PIE after their extensive
evaluation over the range of respective default parameters, as

the empirical delay distribution under PIE was seen to have a
longer tail. Hence, in this work, we evaluate PAQMAN against
CoDel and droptail as they can be justly considered as AQM
and non-AQM benchmarks, respectively.

Qt: queue length immediately before t-th packet arrival,
α: common Gamma shape parameter of packet interarrival
time distributions,
βt: gamma rate parameter of the packet interarrival time
immediately before t-th arrival,
St: state of the system observed by the packet correspond-
ing to t-th arrival, given by (Qt, βt),
µ: service rate of the packets,
At: action taken upon t-th arrival, i.e. admit or drop,
P(St+1|St, At): transition probability to state St+1 from
St given At action was taken,
R(St, At): reward when action At is taken in state St,
τ(St, At): expected transition time when action At is taken
in state St,
Xt: time of t-th packet arrival.

TABLE I: Notation to define the AQM Problem in Sect. III

III. AQM AS AN OPTIMAL DECISION PROBLEM

In the following, we formulate the AQM problem as finding
an optimal policy of a Semi Markov Decision Process where
the underlying system is essentially an AQM-capable router or
switch that carries IP traffic. We recognize that the problem
can be framed in various ways depending upon the flow RTT
and flow properties. Such distinctions, e.g., with respect to
flow RTT can naturally arise during intra-datacenter or inter-
datacenter communications as depicted in Fig. 1. Under the
scenario of negligible RTT, we allow the arrival process to
have a more general form whereas, keeping tractability in
sight, a simpler model is adopted for the case with non-
negligible RTT. In this section, the former is described in
greater detail and we take up the latter in Sect. V.

In our framework where negligible RTT is assumed, the
buffer is observed at arrival instants3 and we aim to find
out the optimal policy, i.e., whether it is ideal to drop or
admit a packet given the state of the system. Apart from
the action, the state evolution of the system is influenced by
the packet interarrival time and the service time distributions.
We formulate the problem using a model of the packet data
arrivals that is given by gamma distributed interarrival times
where the parameters of the distribution depend on the history.
Our choice of distribution for the interarrival times allows us
to fit a wide class of observed traffic flows to the model.
Further, the service times are assumed to be exponentially
distributed. Before formalizing the system description and
the framework in general, we emphasize that optimality here
is defined in terms of expected long term average reward.
The expected long term average reward can be thought of
as the long-term accumulation rate of instant rewards where
the instant reward can be specified precisely depending upon

3We use instant and epoch interchangeably



the intended objective such as a function of throughput and/or
delay. Specifically, we formulate the reward function to capture
the immediate gain in relative throughput while the given delay
threshold is adhered to. The required notations to formally
define the AQM problem are introduced in Table I.

Further, we denote the state space by S and the action
space by A = {0, 1} where 0 and 1 denote admitting and
dropping of a packet, respectively. These notations are used
across sections with minor variation which is mentioned in
respective contexts4.

Looking at the consequence of available actions, we see that
admitting a packet causes the queue length to increase by one
and the effective arrival rate of the TCP flow that is given as
βt/α increases to fu(βt/α) immediately5. Here, the function
fu is dependent upon the exact TCP congestion control
algorithm. For example, for an additive increase multiplicative
decrease (AIMD) algorithm [4], fu(βt/α) = βt/α + a, for
some a > 0. For tractability, we assume the shape parameter
α remains fixed and vary the rate parameter β appropriately to
reflect this change. This implies that following an admission
action, βt+1 assumes the value αfu(βt/α).

In contrast, packet drops evidently do not change the
queue length although the effective arrival rate βt/α drops
to fd(βt/α) immediately where fd is dependent upon the
exact TCP congestion control algorithm. Again, for an AIMD
algorithm, fd(βt/α) = bβt/α, for some 0 < b < 1. As
before, we assume the shape parameter remains fixed and
take βt+1 = bβt. For the sake of simplicity, we derive our
results with the simplest version of AIMD algorithm which
uses a = 1 and b = 1/2. Our results remain valid under
a wide class of elementary congestion control functions and
can be obtained by replacing the increment and decrement of
flow arrival rate with corresponding fu and fd.

To formalize the state evolution under the given AIMD
algorithm, the action At = 0 causes the queue length to
increase to (Qt + 1) instantaneously and the possible states
in the next arrival epoch could be any of the elements of the
set: Q0 = {(q, βt+α) : 0 ≤ q ≤ Qt+1}. That is, St+1 ∈ Q0

and P((q, βt+α)|St, 0) is the probability that exactly Qt+1−q
many packets are served until next packet arrival. Similarly, for
the action At = 1, we have Q1 = {(q, βt/2) : 0 ≤ q ≤ Qt}
and P((q, βt/2)|St, 1) is the probability of serving Qt − q
many packets until the next packet arrival. The transition
probabilities to any state outside these designated sets are zero.
Next, we derive the expression for state transition probabilities
which dictate the pattern of transition between the system
states. These transition probabilities are crucial inputs to the
optimal policy derivation process.

A. State Transition Probabilities

Recall that the system state is described as the vector
consisting of the current queue length and the arrival rate, i.e.,

4In Sect. V (non-negligible RTT case), βt denotes the rate parameter of
the exponentially distributed interarrival time at t-th arrival.

5In contrast, the change in arrival rate occurs with a lag when RTT is
non-negligible; see Sect. V for details.

St = (Qt, βt). We are interested in deriving an expression for
the transition probabilities P(St+1|St, At) as these are inputs
to the Bellman operator which iteratively determines the value
of each state. The value of each system state in turn determines
the policy; see Chap. 7 of [33] for details. To that end, we state
the following lemma.

Lemma III.1. For two independent Gamma random
variables, Yu,v ∼ Gamma(u, v) and Xw,z ∼ Gamma(w, z),
P(Yu,v > Xw,z) = P(Yu−1,v > Xw,z) +
Γ(u+w−1)
Γ(u)Γ(w)

(
v

v+z

)u−1( z
v+z

)w
, where u > 1. This implies

P(Yu,v > Xw,z) =

u−1∑
k=0

Γ(k + w)

Γ(k + 1)Γ(w)

(
v

v + z

)k(
z

v + z

)w

.

Proof. The proof is given in Sect. VIII.

Now, we can derive the transition probabilities as follows.

Proposition III.2. Given the state St = (Qt, βt) at t-
th arrival epoch, Qt and βt being the queue length and
arrival rate, respectively, the transition probabilities to the
state St+1 = (Qt+1, βt+1) in the next epoch under the action
At = 0 are given by

P((Qt+1, βt+1)|St, 0) = 1βt+1=βt+α

Γ(Qt + 1−Qt+1 + α)

Γ(Qt + 2−Qt+1)Γ(α)

(
µ

µ+ βt+1

)Qt+1−Qt+1
(

βt+1

µ+ βt+1

)α

,

for 1 ≤ Qt+1 ≤ Qt + 1 and

P((0, βt+1)|St, 0) = 1βt+1=βt/2(
1−

Qt∑
k=0

Γ(k + α)

Γ(k + 1)Γ(α)

(
µ

µ+ βt+1

)Qt+1−k(
βt+1

µ+ βt+1

)α)
.

Proof. See Sect. VIII.

The transition probabilities for the case when a packet
is dropped are derived similarly. Note that only the rate
parameter of the interarrival time variable changes to βt/2 due
to the drop and the possible queue length in the next decision
epoch is at most Qt. Thus,

P((Qt+1, βt+1)|St, 1) = 1βt+1=βt/2

Γ(Qt −Qt+1 + α)

Γ(Qt + 1−Qt+1)Γ(α)

(
µ

µ+ βt+1

)Qt−Qt+1
(

βt+1

µ+ βt+1

)α

,

for 1 ≤ Qt+1 ≤ Qt and

P((0, βt+1)|St, 1) = 1βt+1=βt/2(
1−

Qt−1∑
k=0

Γ(k + α)

Γ(k + 1)Γ(α)

(
µ

µ+ βt+1

)Qt−k(
βt+1

µ+ βt+1

)α)
.

Unlike the MDP framework, the expected time between two
decision epochs plays a significant role in the SMDP frame-
work that forms the basis of our analysis. Since drop/admit
action affects the packet sending rate of TCP, the expected
time between two arrival events varies. We see that the
expected transition times are: τ(St, 0) = α/(βt + α) and
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Fig. 2: Starting from a system state (Qt, βt), i.e., the current
buffer filling and the current arrival rate parameter, the figure
shows the state transition after packet admit/drop action.
Solid arrows represent actions, whereas dotted arrows sig-
nify subsequent state transitions annotated with corresponding
probabilities. The expected time until the next decision, i.e.,
the mean interarrival time is denoted by τt.

τ(St, 1) = 2α/βt, following the AIMD principle of TCP. We
occasionally abbreviate τ(St, At) as τt. A brief sketch of state
transitions in this framework is provided in Fig. 2.

B. Reward function

Equipped with the transition probabilities, we now focus
on choosing the reward function which shapes the objective
of the policy learning process. The reward function represents
the immediate incentive and the policy learning process aims
to maximize the average accumulated reward in the long run.
To align the learning process with our objective of maximizing
throughput given a user-defined delay constraint, we use
the reward function described in the following. The reward
function penalizes heavily whenever the delay constraint is
breached and provides immediate incentive that equals the
change in the square rate of throughput. The rationale here
is to reflect the relative change rather than its absolute value.
Formally,

R(St, 0) = −M1{(Qt+1)/µ>η} +

(√
βt + α

α
−
√

βt

α

)
,

R(St, 1) = −M1{Qt/µ>η} +

(√
βt

2α
−
√

βt

α

)
,

(1)

where η denotes a target delay threshold and M is a large
penalty value for breaching it. Thus, the reward function
adopts the goal of state-of-the-art heuristic AQM algorithms
that take a target delay as a single input variable [34].

Equipped with the framework above and the reward func-
tion, we focus on finding the AQM policy using the value-
iteration algorithm for SMDP’s. The AQM policy runs on
the buffer and takes the system state (Qt, βt), essentially, the
current buffer filling and the current arrival rate parameter as
input and provides the action, i.e., whether to drop or admit
to maximize accumulated predefined reward.

Formally, a policy π is defined as a mapping π : S 7→
A, i.e., given the system state in terms of buffer filling and
arrival rate, the policy returns one of the possible actions, i.e.,
admission or dropping. Let the accumulated reward up to time
x be denoted by Z(x), i.e., Z(x) =

∑V (x)
t=1 R(St, At), where

V (x) = max {t : Xt ≤ x}, and Xt is the arrival time of the
t-th packet. The expected average long-term reward is then
given by:

gi(π) = lim
x→∞

1

x
Ei,π[Z(x)] , (2)

where i denotes the fact that the initial state was Si and π is
the used policy.

As mentioned, our objective is to find a policy π which
maximizes g for each state Si. To that end, we convert the
SMDP problem to a discrete-time MDP using the data trans-
formation method [33] by appropriately scaling the rewards
and transforming the transition probabilities. This is due to
the fact that an SMDP with average reward criterion can be
converted for the purpose of solving it to a discrete time
MDP where the rewards are modified to reward accumulation
rate and the transition probabilities are adjusted to reflect the
changes from continuous time to discrete time transformation.
Subsequently, we use the value iteration method for discrete
time MDP’s to determine the optimal policy. The transformed
reward function R̄ and transition probability P̄ are respectively
given by:

R̄(St, At) =
R(St, At)

τ(St, At)
,

P̄(St+1|St, At) = P(St+1|St, At)
τ

τ(St, At)
, St+1 ̸= St ,

P̄(St|St, At) = P(St|St, At)
τ

τ(St, At)
+ 1− τ

τ(St, At)
,

(3)

where τ is chosen such that 0 < τ ≤ mins,a τ(s, a).

IV. AQM FOR UNKNOWN TRAFFIC FLOW PROPERTIES

In this section, we consider the problem of finding the opti-
mal AQM policy for unknown traffic flow properties. As estab-
lished in the Sect. III, the optimal AQM policy requires accu-
rate knowledge of the current traffic arrival rate which is deter-
mined by the initial arrival rate and the series of drop or admit
actions. Taking the current arrival rate and the queue filling as
inputs, the AQM policy then prescribes whether it is optimal
to drop or admit an incoming packet. Therefore, to propose a
policy under unknown arrival characteristics, we first need to
infer the respective parameters of the arrival flows. However,
estimating the model parameters while learning the optimal
policy introduces the classical problem of dual control [35].
However, this can be alleviated by an exploration-exploitation
Bandit-heuristic [36], which is computationally tractable.

A. Estimation of Traffic Flow Parameters

Next, we infer the parameters governing the arrival process
at data packet arrivals. To that end, we derive Maximum
Likelihood Estimates (MLE) of arrival shape α and arrival



rates βt as used by the parametric models in Sect. III. Let
{Xn} and {An} denote the sequence of arrival times and
the actions respectively. Further, the corresponding packet
interarrival times are denoted by Wt, i.e., Wt = Xt+1 −Xt.
Recall that At = 1 signifies a packet drop and At = 0 denotes
packet admission. We take a tractable model of Gamma
interarrival times, i.e.

Wt|α, βt ∼ Gamma(α, βt) ,

βt+1 = (βt + α)1−At(
βt

2
)At ,

(4)

following the AIMD congestion control principle of TCP.
Given the sequence of interarrival times W = {Wn}kn=1 and
actions A = {An}kn=1, we aim to estimate the common shape
parameter α and the initial rate parameter β1 to derive the
transition probabilities P(St+1|St, At) described in Sect. III
to find the optimal policy. The likelihood of the parameters
for the observed sequence (W,A) is given by

L(α, β1|W,A)=
(
∏k

n=1 βn)
α(
∏k

n=1 Wn))
α−1e−

∑k
n=1 βnWn

(Γα)k
.

Note that the RHS is simply product of Gamma densities and
the dependence on A is implicit. Now, taking logarithm we
obtain the log-likelihood l(α, β1) as

l(α, β1) = α
∑

log βn + (α− 1)
∑

logWn

−
∑

βnWn − k log(Γα) .
(5)

To optimize the likelihood we obtain

∂l

∂α
=

∑
log βn +

∑(
α

βn
−Wn

)
∂βn

∂α

+
∑

logWn − k
∂

∂α
log(Γα) ,

∂l

∂β1
=

∑(
α

βn
−Wn

)
∂βn

∂β1
,

(6)

where

∂βn

∂α
=

(
1 +

∂βn−1

∂α

)1−An−1
(
1

2

∂βn−1

∂α

)An−1

,

n = 3, 4, . . . , k,

with
∂β2

∂α
= 1{A1=0} and 00 = 1 , by convention.

Further,

∂βn

∂α
=

(
∂βn−1

∂β1

)1−An−1
(
1

2

∂βn−1

∂β1

)An−1

=

(
1

2

)An−1 ∂βn−1

∂β1
, n = 2, 4, . . . , k .

To get the maximum likelihood estimates α̂ and β̂1, we
numerically find the zero point of (6) that maximizes (5).

B. Inference under unknown TCP Congestion Control

In case the exact congestion control algorithm of TCP is
not known beforehand, we assume the effective arrival rate
βt+1/α in the next epoch is changed according to a polynomial
function (e.g., TCP CUBIC [37]) of the present effective
arrival rate βt/α. We can then rewrite (4) as

Wt|α, βt ∼ Gamma(α, βt) ,

βt+1

α
=

(
fu

(
βt

α

))1−At
(
fd

(
βt

α

))At

,
(7)

where fu and fd are polynomials governing the change of
the arrival rate following an admit and drop, respectively. The
log-likelihood has a similar form as shown above, although
estimates of the coefficients of the polynomials, together with
α and β1, are required. This can either be done numerically
or by calculating partial derivatives explicitly, similar to (6).
Subsequently, one can find their zeros corresponding to the
maxima, albeit with additional equations for ∂l/∂cj , for each
coefficient cj . For example, if fu is a cubic polynomial and
fd is a linear function, this method will lead to calculation of
six additional partial derivatives.

Using the parameter estimates along with the observed
series of drop or admit actions, we infer the current arrival rate
β̂t which together with the current queue filling Qt describes
the system state. We thus use the AQM policy similar to
Sect. III to find the optimal action.

V. AQM UNDER NON-NEGLIGIBLE RTT

In this section, we focus on the case where the RTT
between the sender and the receiver of a flow is non-negligible.
As mentioned in Sect. III, we trade model flexibility for
tractability for this case. This tractability is essential given the
case where the switch acts on multiple concurrent flows. We
derive our policy for the single flow case in Sect. V-A whereas
the multiple flow case is described in Sect. V-B. As before,
our objective is to maximize the total throughput subject to a
user-defined delay constraint.
A. Single Flow

In the following, we assume that both packet interarrival
times and the packet service times are exponentially dis-
tributed. Further, the RTT is denoted as r and we have r > 0.
We assume that an estimate of the exact flow RTT is known to
the switch. Note that the sender adapts the sending rate, i.e.,
the arrival rate to the switch, only after it receives a congestion
signal from the receiver, which has a propagation time of r/2.

Thus, the delay between an action at the switch and the
arrival of the congestion signal at the sender corresponds
to the propagation time from the switch to the sender via
the receiver, which approximately equals r. Thus an action
takes effect at the switch only after a time period r, and all
arrivals meanwhile are admitted given there is enough room
in the output buffer. For tractability, we further assume that
the arrivals and the corresponding admit actions in this period
have no direct consequence on the way arrival rate is changed.
Although an approximation, we expect this assumption to have
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Fig. 3: Arrival times Xi and decision times Tt are shown on
the time axis. The first job arrives at time X1 with rate β1.
After X1, X2 is the only arrival in (X1, X1+r] and is assumed
to have no bearing on the arrival rate. We see X3 = T2 and
the arrival rate is changed to β2 at T2 according to the action
taken at X1. The rate again changes to β3 at T3 = X6.

no major consequence and take advantage of the corresponding
simpler state representation.

Recall that we denote the arrival times as {Xs}s∈N. We take
a decision whether to admit or drop on the first packet arrival
at time X1. Thereafter all arrivals in the interval (X1, X1+ r]
are admitted subject to enough room in the buffer and the first
arrival after (X1 + r) can be potentially dropped. The arrival
rate changes at this new arrival after (X1 + r) according to
the action taken at time X1. Subsequently, the decision making
process goes dormant for another time period of length r and
the drop/admit decision is taken again at the first arrival after
this period. The change in arrival rate also takes place at this
time. An illustrative example is given in Fig. 3. We call the
arrival epochs where a drop decision can be possibly made as
decision times and denote them as {Tt}t∈N. As explained, Ti’s
(i ≥ 2) are also the time points where the arrival rate changes
according to the action taken at Ti−1.

The service times are assumed independently and identically
distributed (iid) as Exp(µ) and given the relevant arrival rate
parameter βk, we have

Xi+1 −Xi ∼ Exp(βk), i ∈ N,

for some k ∈ N. Note that, unlike Sect. III, the arrival rates
do not change at every arrival. Rather the change happens
at the decision times owing to the delay factor of r and the
fact that intermediate arrivals do not influence the arrival rate
directly. Focusing on the inter-decision time, we observe that
the residual time to the next decision time after one RTT r
is also distributed as Exp(βj), for some j ∈ N, following the
memoryless property of exponential distribution. Further, the
change in the arrival rate β happens only at the decision times.
Therefore, we know for the inter-decision times

Ti+1 − Ti|βi ∼ r + Exp(βi), i ∈ N , (8)

as βi is the arrival rate during the interval [Ti, Ti+1).
To derive the optimal decision at times points Ti, we adopt

the SMDP framework similar to the derivations of Sect. III. We
retain much of our notations from Sect. III with the exception
of βt which denotes the rate parameter of packet interarrival

times at t-th decision epoch. In contrast to Sect. III, βt in this
case is already known at (t− 1)-th arrival epoch and, hence,
is a valid input to the policy.

Note that in the time interval (Ti, Ti + r], the queue length
grows as the population of a birth-death process, where the
transition matrix P(s) over a time interval of length s is given
by esGj . Here, Gj is the (L+1)× (L+1) intensity matrix of
the process in the relevant interval where L is the buffer size.
It is given by

Gj =


−βj βj 0 . . . . . .
µ −µ− βj βj 0 . . .
0 µ −µ− βj βj . . .
. . . . . . . . . . . . . . .
0 . . . . . . µ −µ

 ,

for some j. Further, in the interval (Ti + r, Ti+1) there can
only be packet departures and hence the transition matrix for
any interval of length s is given by esG where

G =


0 0 0 . . . . . .
µ −µ 0 0 . . .
0 µ −µ 0 . . .
. . . . . . . . . . . . . . .
0 . . . . . . µ −µ

 . (9)

The following fact helps us derive the transition matrix
between two consecutive decision epochs.

Fact V.1. If all eigenvalues of the matrix A are positive,∫ ∞

0

e−uAdu = A−1 .

Proof. This well-known result follows from the fact that
limt→∞ e−tA = 0 for a positive definite matrix A.

We now derive the transition matrix for the queue length
over the interval between two consecutive decision epochs.
The first step towards this is to find the transition probabilities
for the queue length as the change of arrival rate following a
transition is deterministic.

Proposition V.2. The transition probability matrix Pi for
queue length Q over the interval (Ti, Ti+1) is given by

Pi = βie
rGi(βiI −G)−1.

Proof. See Sect. VIII.

Observe that P(Qt+1|Qt, 1) corresponds to the Qt-th row
of the transition matrix over the interval [Tt, Tt+1). Under
At = 1, the transition matrices over intervals [Tt, Tt+1) and
(Tt, Tt+1) are identical as the incoming packet is dropped.
Hence, P(Qt+1|Qt, 1) is given by the (Qt, Qt+1)-th element
of Pt. However, under At = 0, the queue length jumps to
max(Qt+1, L) at time Tt and the the (Qt,max(Qt+1, L))-th
element represents P(Qt+1|Qt, 0). Finally, the state transition
probabilities can be expressed as follows:

P(St+1|St, 0) = P(Qt+1|Qt, 0)1βt+1=βt+1,

P(St+1|St, 1) = P(Qt+1|Qt, 1)1βt+1=βt/2.
(10)



Further, similar to (1), we define the reward function as:

R(St, 0) = −M1{(Qt+1)/µ>η} +

(√
βt + 1−

√
βt

)
,

R(St, 1) = −M1{Qt/µ>η} +

(√
βt/2−

√
βt

)
.

(11)

Also, it is immediate from (8) that the expected inter-decision
time τ(St, At) = r + 1/βt. Equipped with the transition
probabilities, reward function and expected transition times,
we can now transform the SMDP problem into a discrete time
MDP problem like Sect. III and perform value iteration on the
transformed MDP to find out the best policy.

B. Multiple Flows

In this section, we extend our SMDP formulation from
Sect. V-A in presence of concurrent flows with different RTT.
We assume that the flow RTT’s are known or estimated at
the switch running AQM.

We define the decision times for a flow of interest as the
instances of the first packet arrivals that are at least an RTT
apart. That is for a fixed flow, when an AQM decision is
carried out for one packet, the subsequent packets within one
RTT window are admitted. The next AQM decision is taken
for the first packet after the RTT window has passed. We will
see in the following that, unlike the single flow case, the time
since the last decision epoch involving a packet from each flow
plays an important role in formalizing the framework here.

Let us denote the packet arrival times for the j-th flow as
{Xjs}, with packet index s ∈ N and, similar to the single flow
case, we assume for the jth flow

Xj(i+1) −Xji|βjk ∼ Exp(βjk), i ∈ N,

for some k ∈ N, j ∈ [n] and [n] = {1, 2, . . . , n}, n being the
number of concurrent flows. The decision times are denoted
as {Ts}s∈N and we see that the mean arrival rate for each
flow remains constant between two decision epochs. This is
because we assume that the AQM signal reaches the sender
after an RTT.

Let βββt = (β1t, β2t, . . . , βnt)
T be the parameter vector

of packet interarrival times at the t-th decision epoch and
rrr = (r1, r2, . . . , rn)

T denote the vector of flow RTTs. Fur-
ther, we express the age vector at t-th decision epoch by
uuut = (u1t, u2t, . . . , unt)

T where ujt denotes the time since the
last decision epoch concerning a packet from the j-th flow. In
absence of a last decision time concerning flow j, i.e., before
the arrival of the first packet from flow j, we define ujt = rj .
Observe that if the t-th decision epoch involves a packet from
flow j, we have ujt = 0. An illustration of the decision epochs
for the case of three concurrent flows is provided in Fig. 4.

At the t-th decision epoch, let Yjt denote the time until the
next AQM decision on flow j. In other words, Yjt indicates
the time until the arrival of a packet from flow j that is at least
one RTT after the last decision epoch from flow j. Given the
RTT rj of flow j, we can write

Yjt = Wj +max(0, rj − ujt) ,

r2r2

r1r1

r2

r1

Arrivals
Decisions

0

X11 X13 X16
Flow 1

Flow 2
0

X21 X22 X25

0 T2 T5 T8

Decision 
epochs

r3 r3

Flow 3
0

X31 X32

W12 W14

W22

W32

T1 T3

Fig. 4: Illustration of decision times when three flows pass
through the switch buffered link. The first decision time is the
first arrival, which takes place at T1 = X21. Next decision time
concerning flow 2 cannot be earlier than X21 + r2. The first
arrival from flow 1 or 3 can potentially be the next decision
time, which turns out to be T2 = X11. Likewise, the decision
process on flow 1 goes dormant in (X1, X1 + r]. Note that
decision times are the times where the arrival rates change for
the associated flow. The interarrival time Wij is exponentially
distributed with a parameter that was fixed at the last decision
time concerning flow i, according to the action taken at the
second last decision time on that flow.

where Wj denotes the residual time to the packet arrival from
j-th flow after rj amount of time has passed since the last
decision epoch involving flow j. By the memoryless property
of exponential distribution we know that Wj ∼ Exp(βjt), for
j ∈ [n]. Thus, the time until the (t + 1)-st decision epoch
across all flows is given by

Yt = min
j∈[n]

Yjt . (12)

Therefore, we can write the inter-decision time Tt+1−Tt =
Yt as

Yt|βββt,uuut ∼ min
j∈[n]

{Wj +max(0, rj − ujt)}, t ∈ N.

Equipped with the description above we now focus on for-
malizing the SMDP to derive the optimal AQM action corre-
sponding to any given switch state. Apart from the individual
flow arrival rates and the queue length, the state description
in this case includes the age vector uuut and the flow index of
the incoming packet. To formulate the AQM problem as an
SMDP, we use the notations introduced in Sect. III with the
following exceptions:



βββt: flow-wise rate parameter vector of packet interarrival
times at the t-th decision epoch,
uuut: flow-wise age vector, i.e., time since last decision
epoch involving a packet from the concerned flow at the
t-th decision epoch,
St: state of the system observed by the packet correspond-
ing to the t-th decision epoch, given by (j,Qt,βββt,uuut)
where j denotes the flow index of the packet for which
an AQM decision is to be taken.

With the flow-wise age uuut being a continuous variable
we derive next the corresponding transition kernels. Let
B = (j,Qt+1,βββt+1, U) denote the set that the system state at
t+ 1, i.e., St+1, can possibly belong to. As usual, we restrict
our focus on U ∈ B(Rn), the Borel sigma algebra over
Rn. Due to the known fact that right semi-closed rectangles
generate B(Rn), it is sufficient to consider the sets U having
the form U = I1 × I2 × . . . In where each Ij is a right
semi-closed interval.

Going back to (12), we see that the value of the age vector
at the decision epoch (t+1) is given by uuut+Yt. This motivates
us to define the translates

I ′j = {x : x+ ujt ∈ Ij} , j ∈ [n] .

Subsequently, the transition kernel can be written as:

P(St+1 ∈ B|St, 0) = 1βββt+1=βββt+ej

P

(
Yt ∈

⋂
k∈[n]

I ′k, Yt = Yjt, Vt = Qt+1 −Qt|At = 0

)
,

P(St+1 ∈ B|St, 1) = 1βββt+1=h(βββt,j)

P

(
Yt ∈

⋂
k∈[n]

I ′k, Yt=Ykt, Vt=Qt+1−Qt|At=1

)
,

(13)

where Vt denotes the change in queue length in the interval
[Tt, Tt+1) and h(xxx, j) = (x1, x2, . . . , xi/2, . . . , xn) and ej
denotes the unit vector whose j-th coordinate equals 1. Es-
sentially, the indicator function involving βββt in the RHS of
(13) denotes the fact that the arrival rate can only change to
specific values which are determined by the drop or admit
action and the AIMD principle of TCP. Further, (t + 1)-th
decision epoch involves flow j iff the corresponding inter-
decision time is Yt = Yjt. Finally, the age vector uuut+1 in the

next epoch belongs to the set U iff Yt ∈ Ik −ukt, 1 ≤ k ≤ n.
We further introduce the following shorthand notations:⋂

j∈[n]

I ′j = (a, b], when
⋂

j∈[n]

Ij ̸= ϕ ,

max(0, rj − ujt) := cj , j ∈ [n] .

Given a decision at time zero we use cj to denote the time span
during which there cannot be a decision concerning flow j. In
particular, this time span equals the RTT as ci = ri, since
St = {i, Qt,βββt,uuut}. Now lets order the time spans as ci1 ≤
ci2 ≤ · · · ≤ cin . Evidently, for (a, b] ⊂ (−∞, ci1 ], we have
for the time to the next decision of the flow i1 that P(Yt ∈
(a, b]) = 0. Further, for (a, b] ⊂ (cil , cil+1

] we can express the
probability of the time to the next decision falling in this time
span as (∗), where we have used the shorthand:

Gj(a, b) = P (Yt ∈ (a, b], Yt = Yjt, Vt = Qt+1 −Qt) .

See Sect. VIII for proof.
From (∗), the probability under the drop action At = 1 is

given by the (Qt, Qt+1)-th element of the kernel whereas the
(Qt,max(Qt + 1, L))-th gives the required probability under
the admit action At = 0. Finally, similar to the single flow
case, we define the reward function R(St, At) as

R(St, 0) = −M1{(Qt+1)/µ>η} +

(√
βj + 1−

√
βj

)
,

R(St, 1) = −M1{Qt/µ>η} +

(√
βj/2−

√
βj

)
.

(14)

To derive the optimal policy, we can now simulate the tra-
jectory of the system according to (∗) and use a function
approximator, e.g., DQN [38] to learn the Q-values for each
state-action pair. Subsequently, the optimal policy is given by
the action with higher Q-value for each state. The advantage
of our approach over model-free learning is that it requires a
lot less data to reliably predict the optimal action.

VI. EVALUATION

In this section, we evaluate PAQMAN for TCP Reno traffic
under different network scenarios using simulations. We first

Gj(a, b) = 1j∈{i1...il}
∏

1≤k≤l

e

(
(cik−cik−1

)Hik

) ∫ b

a

e

(∑
1≤k≤l,ik ̸=j −βik

(y−cik )
)
e(y−cil )Hil+1βje

−βj(y−cj)dy

= 1j∈{i1...il}βje

( ∑
1≤k≤l

βik
cik

) ∏
1≤k≤l

e(cik−cik−1
)Hik

−cilHil+1

∫ b

a

e

(∑
1≤k≤l −βik

y
)
eyHil+1dy (∗)

= 1j∈{i1...il}βje

( ∑
1≤k≤l

βik
cik

) ∏
1≤k≤l

e(cik−cik−1
)Hik

−cilHil+1

 ∑
1≤k≤l

βikI −Hil+1

−1

(
ea
(∑

1≤k≤l βik
I−Hil+1

)
− eb

(∑
1≤k≤l βik

I−Hil+1

))
,
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(a) Service rate = 5 Mbit/s
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(b) Service rate = 10 Mbit/s

Fig. 5: PAQMAN under negligible RTT for two different
service rates: the plot considers arrival rates ∈ [0.01, 12] Mbit/s
and the buffer size is set to 50 packets. The target delay
threshold η = 50 ms corresponds to 20 packets in (a) and to
40 packets in (b). The darker region shows where an incoming
packet should be dropped.
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(a) RTT = 2 ms
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(b) RTT = 10 ms

Fig. 6: PAQMAN with known RTT: the left subplot assumes
an RTT of 2 ms and the right corresponds to a higher RTT of
10 ms. Like Fig. 6b, we take arrival rate ∈ [0.01, 12] Mbit/s,
service rate = 10 Mbit/s, and a buffer size of 50 packets
and show the packet drop area in dark. As PAQMAN admits
all packets arriving between two decision events which is at
least one RTT long, it compensates by dropping packets in
(b) earlier than (a). In contrast to queue length based AQM
heuristics these figures show that an estimate of the arrival
rate is crucial to optimize the AQM performance.

focus on the case where the switch deals with a single flow
having negligible RTT. The evaluation under non-negligible
RTT is subsequently taken up in Sect. VI-B. Throughout
our simulations, PAQMAN aims to achieve a delay shorter
than the target delay η = 50 ms while optimizing the
throughput. Recall from (1) and (11) that the reward function
combines individual delay and throughput objectives. The
penalty amount in the reward function for breaching this delay
is fixed at M = 106. To make comparisons fair, we set the
target delay parameter of CoDel to the same target delay,
wherever applicable. All other internal Codel parameters are
left unchanged.

While comparing the performance of different policies, we

look at the empirical stationary behaviour of the corresponding
system. Here, we consider the behavior of long-lived flows.
To derive the stationary behaviour, we conduct 200 simulation
runs. Each run spans across 5×104 packet arrivals to simulate
the stationary behaviour and the run starts with an arrival
rate equal to the link service rate. To generate comparison
plots, we subsequently time-average the congestion indicators
or the state of the system, given by the buffer filling of the
switch and the flow arrival rate. Note that the stationary
arrival rate equals the stationary throughput and the queue
length determines the expected delay. We use these immediate
connotations to interpret the findings from our plots. To show
the transient behaviour of the respective AQM algorithm
in these plots, time propagation is indicated by varying the
colour of the state from blue to yellow.

A. Negligible RTT

In this section, we analyze PAQMAN for the case of a single
flow having negligible RTT. We follow the method described
in Sect. III to compute the packet drop policy.

We first plot the derived policies using the inputs from (3)
for two different average service rates. The simulation
setup for the first scenario corresponds to a service rate
µ = 5 Mbit/s, while the second is given by µ = 10 Mbit/s.
Further, we calculate the policy for arrival rates in the range
[0.01, 12] Mbit/s, simulated using a Gamma distributed packet
interarrival times with fixed shape parameter α = 1.5. For
our simulations, we only change the rate parameter β of
the Gamma random variable to reflect the impact of the
drop/admit action on the effective arrival rate β/α. The
resulting policies are shown in Fig. 5, where an incoming
packet should be dropped if the current state of the switch,
i.e., buffer filling and the packet arrival rate belong to
the dark region. As expected, a lower service rate at the
switch entails more aggressive packet drops reflected by the
difference in Fig. 5a and 5b. The non-trivial effect of flow
arrival rate on the policy is also noteworthy.

Next, we compare PAQMAN to CoDel and droptail queues.
As mentioned earlier, the target delay parameter of CoDel is
set to the delay threshold for PAQMAN. The evaluation is
shown in Fig. 7 where the policy from Fig. 5b is used to
generate the left subplot. We plot the system state, given by the
(i) current buffer filling and (ii) flow arrival rate, time-averaged
over multiple runs. Our plots suggest that, in stationarity,
PAQMAN results in an arrival rate that is comparable to
CoDel, although the queue length appears to be much shorter.
This immediately translates to the fact that PAQMAN yields
equivalent stationary throughput while keeping the delay much
shorter. As already known, the droptail policy in Fig. 7c
generates near-perfect utilization at the cost of a longer delays.

B. Non-negligible RTT

Next, we consider the case when the flow RTT is non-
negligible. We assume throughout this subsection that the
RTT is estimated by (or known to) the switch. We follow the
method from Sect. V to derive PAQMAN under each setting
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Fig. 7: State evolution under different policies for a switch port with service rate = 10 Mbit/s. As already known, the droptail
queue achieves higher stationary utilization than the AQMs at the cost of higher delay. PAQMAN leads to much shorter delay
than CoDel, while achieving comparable stationary throughput and faster convergence to steady-state.
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Fig. 8: State evolution under different policies for a flow with known RTT = 2 ms and switch service rate = 10 Mbit/s. Similar
to Fig. 7, PAQMAN converges faster to the steady-state characterized by shorter delay and equivalent throughput.
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Fig. 9: State evolution under different policies for a setup same as Fig. 8 except that the flow RTT is much higher (10 ms).
We observe similar phenomena as Fig. 8 although both the stationary delay and the throughput decrease across AQM policies.

and accordingly simulate the system. As before, we compare
the resulting performance with CoDel and droptail queues.

In Fig. 6, we illustrate PAQMAN under low and high RTTs.
We fix the packet service rate at 10 Mbit/s and restrict our
attention to arrival rate ∈ [0.01, 12] Mbit/s. Recall that in this
case, PAQMAN admitted all arrivals between two decision
epochs subject to sufficient room at the buffer of the switch.
This leads to increased packet buffering for higher RTTs,
especially in high arrival regimes as the inter-decision times
are RTT-based. To alleviate this problem, the policy is more
aggressive and starts dropping earlier as seen via a comparison

of Fig. 6a and 6b.

In Fig. 8 and 9, we compare PAQMAN with CoDel and
Droptail when there is only one flow passing through the
buffered switch port. The state evolution under PAQMAN (left
subplot) in these figures is generated using the corresponding
policy from Fig. 6, which follows the workflow described in
Sect. V-A. Similar to Fig. 7, we see that PAQMAN achieves
shorter delay than CoDel while yielding comparable stationary
throughput. Further, a quick comparison of Fig. 7-9 reveals
that a longer flow RTT leads to a reduction in both throughput
and delay, which we investigate further in Fig. 11. Here, we
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Fig. 10: Evolution of queue length and the total (aggregate) arrival rate for 3 flows under different policies for service rate =
10 Mbit/s with target delay = 50 ms and RTT = = [2, 4, 6] ms.

first derive PAQMAN and subsequently simulate the system
for long-lived flows (5× 104 packet arrivals) for every given
RTT. The box plots per RTT in Fig. 11 are generated using
200 simulation runs. Consistent with Fig. 7-9, we see that the
stationary delay and the stationary throughput tend to diminish
as the RTT increases.

Finally, in Fig. 10, we compare PAQMAN’s performance in
the multi-flow case. Here, we consider three flows with RTT
[2, 4, 6] ms and the service is assumed to be µ = 10 Mbit/s. We
start the system in a phase where the total arrival rate equals
the switch port service rate and the individual arrival rates
are equal, i.e., each flow has equal share of the bandwidth.
Similar to the experiments in the single flow case, we simulate
the system for 200 runs, where each run spans across 5 ×
104 packet arrivals. To learn the policy, we pre-simulate the
system and use a DQN to approximate the Q-values for each
system state, which in turn decides the optimal action. As with
any offline-learned algorithm, the efficacy can be verified only
under the assumption that underlying conditions do not vary
much from the training sample which we ensure during the
simulation. The time-averaged plot of the aggregated system
state expressed in terms of queue length and total arrival rate is
shown in Fig. 10. We see that that PAQMAN achieves similar
throughput to CoDel, while keeping the delay considerably
low here as well.

VII. CONCLUSION

In this paper we presented PAQMAN, a principled approach
to AQM with corresponding algorithmic design. In contrast to
many AQM heuristics, we take a direct approach to incorporate
the packet arrival rate in our formulation of the state of the
system and optimize with respect to a linear combination of
delay and throughput objectives. Our work takes a probabilistic
approach to combine a model of congestion control (mainly
Additive Increase- Multiplicative Decrease) with AQM packet
drops to formulate the AQM problem as finding optimal packet
dropping policy in a Semi-Markov Decision Process, given a
target delay parameter. Simulation results show that the direct
approach of incorporating the arrival rate in the state leads to
comparable throughput of the system to the widely used AQM
policy CoDel, while outperforming it in terms of latency.

1 2 3 4 5 6 7 8 9 10
RTT (ms)

0

0.01

0.02

0.03

S
ta

tio
na

ry
 d

el
ay

 (
se

c.
)

(a) Delay

1 2 3 4 5 6 7 8 9 10
RTT (ms)

2

4

6

8

10

12

S
ta

tio
na

ry
 th

ro
ug

hp
ut

 (
M

bi
t/s

)

(b) Throughput

Fig. 11: Impact of flow RTT on the stationary delay and
throughput. Given an RTT, we simulate the system for long-
lived flows using PAQMAN. Each box plot is generated using
200 simulation runs. Consistent with previous plots, both delay
and throughput decrease with an increasing RTT.

VIII. APPENDIX

Proof of Lemma III.1. : Let us first denote the upper incom-
plete gamma integral by γ(·, ·), which satisfies the following
recursion:

γ(x+ 1, y) =

∫ ∞

y

txe−tdt = xγ(x, y) + yxe−y,



for ℜ(x) > 0. We see that

P(Yu,v > Xw,z)

=

∫ ∞

0

P(Yu,v > Xw,z|Xw,z = t)dPX(t)

=

∫ ∞

0

P(Yu,v > t)dPX(t), Yu,v ⊥⊥ Xw,z

=

∫ ∞

0

γ(u, vt)

Γ(u)

zwtw−1e−zt

Γ(w)
dt

=

∫ ∞

0

(u− 1)γ(u− 1, vt) + (vt)u−1e−vt

Γ(u)

zwtw−1e−zt

Γ(w)
dt

= P(Yu−1,v > Xw,z) +

∫ ∞

0

vu−1zwtu+w−2e−(v+z)t

Γ(u)Γ(w)
dt

= P(Yu−1,v > Xw,z) +
Γ(u+ w − 1)vu−1zw

Γ(u)Γ(w)(v + z)u+w−1
·∫ ∞

0

(v + z)u+w−1tu+w−2e−(v+z)t

Γ(u+ w − 1)
dt

= P(Yu−1,v > Xw,z)+

Γ(u+ w − 1)

Γ(u)Γ(w)

(
v

v + z

)u−1(
z

v + z

)w

,

which proves the first part of the lemma. By induction on u,

P(Yu,v > Xw,z) = P(Y1,v > Xw,z) +
u∑

k=2

Γ(k + w − 1)

Γ(k)Γ(w)

(
v

v + z

)k−1(
z

v + z

)w

.
(15)

Since Y1,v is exponentially distributed with parameter v,

P(Y1,v > Xw,z) =

∫ ∞

0

e−vt z
wtw−1e−zt

Γ(w)
dt

=

(
z

v + z

)w ∫ ∞

0

(v + z)wtw−1e−(v+z)t

Γ(w)
dt

=

(
z

v + z

)w

.

Hence from (15),

P(Yu,v > Xw,z) =

u−1∑
k=0

Γ(k + w)

Γ(k + 1)Γ(w)

(
v

v + z

)k(
z

v + z

)w

.

Proof of Prop. III.2. : We start by observing that
P((q, βt+1)|St, 0) denotes the probability of the event
that exactly Qt+1−q packets are served between two packet
arrivals for 1 ≤ q ≤ Qt + 1. Now, at least n packets are
served between two arrivals if and only if the corresponding
service time Yn,µ is less than the respective interarrival time
Xα,βt+1

. The change in the arrival rate parameter is given by
the fact that following an action on the t-th packet arrival, the
arrival rate parameter is instantly changed to βt+1 = βt + α

which determines the distribution of the next interarrival
time. Thus, given βt+1 = βt + α, for 1 ≤ q ≤ Qt + 1,

P((q, βt+1)|St, 0)

= P(YQt+2−q,µ > Xα,βt+1)− P(YQt+1−q,µ > Xα,βt+1)

=
Γ(Qt + 1− q + α)

Γ(Qt + 2− q)Γ(α)

(
µ

µ+ βt+1

)Qt+1−q(
βt+1

µ+ βt+1

)α

.

For q = 0, we observe that no more than Qt + 1 packets can
be served between two arrivals. Hence, given βt+1 = βt + α,

P((0, βt+1)|St, 0)

= P(YQt+1,µ ≤ Xα,βt+1
)

= 1− P(YQt+1,µ > Xα,βt+1
)

= 1−
Qt∑
k=0

Γ(k + α)

Γ(k + 1)Γ(α)

(
µ

µ+ βt+1

)Qt+1−k(
βt+1

µ+ βt+1

)α

,

which completes the proof.

Proof of Prop. V.2. The queue length grows like the popula-
tion of a birth-death process in the interval (Ti, Ti + r] with
intensity matrix Gi. Thus the transition matrix for this interval
is given by erGi . Further Ti+1− (Ti+ r) ∼ Exp(βi) implying

Pi = erGi

∫ ∞

0

etGβie
−βitdt,= βie

rGi

∫ ∞

0

e−(βiI−G)tdt.

We have used the facts that e−cI = e−cI and cI commutes
with any matrix of similar dimension ∀c ∈ R. Now,

βiI −G =


βi 0 0 . . . . . .
−µ µ+ βi 0 0 . . .
0 −µ µ+ βi 0 . . .
. . . . . . . . . . . . . . .
0 . . . . . . −µ µ+ βi

 .

Therefore, by Gershgorin’s theorem [39], all eigenvalues of
βiI − G lie in the following closed balls: B(βi, 0), B(µ +
βi, µ). Hence, by lemma V.1

Pi = βie
Gir(βiI −G)−1.

Proof of (∗). : Observe that

P

(
Yt ∈ (a, b], Yt = Yjt, Vt = Qt+1 −Qt

)
=

∫ b

a

P

(
Yt = y, Vt = Qt+1 −Qt|Yjt = y

)
dFYjt

(y)

=1j∈{i1...il}

∫ b

a

P

( ⋂
k≤l,ik ̸=j

Yikt > y

)
P(Vt = Qt+1 −Qt|Yt = y)dFYjt(y)

=1j∈{i1...il}

∫ b

a

∏
k≤j,ik ̸=j

P(Yikt > y)

P(Vt = Qt+1 −Qt|Yt = y)dFYjt
(y) .

(16)

Here, the indicator function 1j∈{i1...il} indicates the fact that
in order to have the flow index of the packet involving the
next decision epoch as j, cj ≤ cil should hold. Further, the



Time since last decision

.

.

Fig. 12: Intensity and corresponding transition matrices (TMs)
between two decision epochs: for the time since last decision
epoch, the intensity matrices (H) are highlighted in grey for
successive intervals. Corresponding TMs over a (sub) interval
of length x is given by exH . The TM for an interval consisting
of contiguous subintervals is the product of respective transi-
tion matrices as shown for (0, y).

first term in the integrand corresponds to the fact that given
Yjt = y, the events {Yt = Yjt} and {Yikt > y ∀k ≤ l, ik ̸= j}
are equivalent. Now, to evaluate the expression P(Vt = Qt+1−
Qt|Yt = y) in (16), we notice that the queue length of the
underlying process grows like the population of a birth-death
process where the death rate is always µ subject to a positive
queue length. The birth rate, however, depends upon the time
interval. Observe that there cannot be any packet arrival from
ik-th flow once the time since the last decision epoch exceeds
cik . Thus, the (L+1)×(L+1) intensity matrix in the interval
(cik−1

, cik ], 1 ≤ k ≤ n is given by

Hik =


−bk bk 0 . . . . . .
µ −µ− bk bk 0 . . .
0 µ −µ− bk bk . . .
. . . . . . . . . . . . . . .
0 . . . . . . µ −µ

 ,

with the sum of flow rates bk =
∑

m≥k βim and ci0 = 0 by
definition. Further, the intensity matrix in the interval (cin ,∞)
is given by G from (9). The different intensity matrices for the
arrivals in the different time spans after the last AQM decision
is illustrated in Fig. 12.

Replacing P(Vt = Qt+1 − Qt|Yt = y) in (16) by the
corresponding transition matrix and denoting the respective
transition kernel for P (Yt ∈ (a, b], Yt = Yjt, Vt = Qt+1−Qt)
as Gj(a, b), we obtain the formulation (∗).
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