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ABSTRACT The BB84 quantum key distribution (QKD) protocol is based on the idea that the sender
and the receiver can reconcile a certain fraction of the teleported qubits to detect eavesdropping or noise
and decode the rest to use as a private key. Under the present hardware infrastructure, decoherence of
quantum states poses a significant challenge to performing perfect or efficient teleportation, meaning that
a teleportation-based protocol must be run multiple times to observe success. Thus, performance analyses
of such protocols usually consider the completion time, i.e., the time until success, rather than the duration
of a single attempt. Moreover, due to decoherence, the success of an attempt is in general dependent on the
duration of individual phases of that attempt, as quantum states must wait in memory while the success or
failure of a generation phase is communicated to the relevant parties. In this work, we do a performance
analysis of the completion time of the BB84 protocol in a setting where the sender and the receiver are
connected via a single quantum repeater and the only quantum channel between them does not see any
adversarial attack. Assuming certain distributional forms for the generation and communication phases of
teleportation, we provide a method to compute the moment generating function (MGF) of the completion
time and subsequently derive an estimate of the CDF and a bound on the tail probability. This result
helps us gauge the (tail) behaviour of the completion time in terms of the parameters characterising the
elementary phases of teleportation, without having to run the protocol multiple times. We also provide an
efficient simulation scheme to generate the completion time, which relies on expressing the completion
time in terms of aggregated teleportation times. We numerically compare our approach with a full-scale
simulation and observe good agreement between them.

INDEX TERMS Quantum communication, quantum key distribution, simulation.

I. INTRODUCTION

Teleportation facilitates the communication of
quantum information between nodes separated
by physical distance. Unlike classical commu-
nication, the available hardware for performing
teleportation is not efficient, which means that
multiple attempts must be made to perform a
single successful teleportation. It is therefore

more meaningful to consider the completion
time, i.e. the time to success, of a telepor-
tation than the duration of a single attempt.
Furthermore, the duration of each phase of a
teleportation attempt determines the degree of
decoherence of the qubits involved, and hence
the success of the attempt. This phenomenon
is a common theme in quantum communi-

VOLUME xx, 20xx 1



Kar et al.: An Analysis of the Completion Time of the BB84 Protocol

cation [1], where attempts are repeated and
their success generally depends on the specific
details of each attempt. The authors in [3]–[5]
have modelled this behaviour in a discrete-time
setting to analyse the completion time of certain
quantum communication modules.

In this work, we extend their approach to a
continuous-time setting and do a performance
analysis of the completion time of the BB84
protocol [6]. Our main focus is on the execu-
tion of the protocol under realistic hardware
infrastructure, rather than considering its secu-
rity aspects. Specifically, we assume that the
users are connected via a single first-generation
repeater [2], i.e., a repeater that does not rely
on quantum error correction, and the quantum
channel between them does not experience any
attack. In such a benign setting, the BB84
protocol can fail due to inefficient hardware or
decoherence of quantum states, which occurs,
for example, during the communication phases
of the protocol. In our formulation, we consider
the local operation and classical communication
(LOCC) phases to have positive durations to
account for the effect of decoherence during
these intervals.

Our first contribution is to provide a formula
for the MGF of the completion time where the
relevant phases last for a non-negligible random
time. The MGF can then be used to obtain the
Laplace transform of the CDF of the comple-
tion time, which can be subsequently inverted
to derive the CDF. We also derive a delay bound
on the tail probability using Chernoff’s method.
This result helps us understand the behaviour
of the completion time with respect to the
parameters of the elementary stages of telepor-
tation without having to go through the tedious
exercise of running the protocol multiple times.
Note that the completion time in this framework
also provides a benchmark for the completion
time in the presence of an eavesdropper, with
other factors remaining the same.

Our second contribution is a fast simulation
scheme to generate the completion time of the

protocol. There has been a considerable amount
of work [8]–[12] on the simulation of the
BB84 protocol with or without attack, where
the focus has been on obtaining the key rate
or the eavesdropping detection probability. All
of these works simulate the individual phases
of the protocol to arrive at their end objective.
In this work, we demonstrate that this is not
necessary if we only want to obtain the comple-
tion time, and we assume that the durations of
the relevant phases follow certain distributions.
Under such assumptions, we first show that the
total time taken to teleport a qubit can be well-
approximated by a Coxian phase-type distribu-
tion, which can be efficiently aggregated to sim-
ulate the completion time of the BB84 protocol.

The rest of the paper is structured as follows:
we describe the setup and main results on the
BB84 protocol in Sect. II, whereas the methods
and proofs are given in Sect. III. We next
describe the simulation scheme in Sect. IV,
while a numerical evaluation of the derived
results is given in Sect. V.

II. ASSUMPTIONS AND MAIN RESULTS ON
THE BB84 PROTOCOL
A. SETUP AND ASSUMPTIONS

We begin this section by recalling the charac-
teristic features of the BB84 protocol [6]. In
this protocol, the sender Alice encodes each
bit of a binary sequence of length n using
one of two bases chosen uniformly at random.
Once the basis is chosen, 0’s and 1’s are coded
using orthogonal states in that basis. For exam-
ple, Alice may encode Bin(n, 1/2) bits using
photon polarisation in horizontal-vertical basis,
with H-polarised photons (|0⟩) representing 0
and V-polarised ones (|1⟩) signifying 1, while
encoding the rest of the bits in diagonal po-
larisation basis, with D-polarised (|+⟩) and A-
polarised (|−⟩) photons representing 0 and 1,
respectively. After receiving the encoded qubits,
Bob measures them in one of these bases,
chosen uniformly at random. Alice and Bob
then announce their bases for each bit and keep
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the ones where the bases agree, which occurs
for Bin(n, 1/2) bits. Out of these bits, a random
sample is chosen, and the protocol is said to be
successful if the bits match for a certain fraction
of the sample. The remaining bits are then used
as a key. To analyse the protocol, we further
assume the following:
A1 Single channel: Alice and Bob are con-

nected by a single quantum channel, im-
plying that the qubits are teleported in
sequence.

A2 Single repeater: Alice and Bob are just far
enough apart to be connected via a single
quantum repeater.

A3 No eavesdropping: There is no eaves-
dropping on the channel while the qubits
containing the key data are teleported.

A4 Link modelling: Following [4], we model
an elementary link between a node and the
repeater as Werner state [13]. A Werner
state with Werner parameter w is given by:

1 + 3w

4
|Φ+⟩⟨Φ+|+ 1− w

4

(
|Φ−⟩⟨Φ−|

+ |Ψ+⟩⟨Ψ+|+ |Ψ−⟩⟨Ψ−|
)

,

where |Φ+⟩ , |Φ−⟩ , |Ψ+⟩ , and |Ψ−⟩ de-
note the Bell states. If not used immedi-
ately, the effect of decoherence on the link
is captured by the following formula:

w(t) = w0e
−t/tc , (1)

where w(t) is the Werner parameter of the
link after time t from generation, w0 is the
Werner parameter of a freshly generated
link, and tc denotes the joint coherence
time of the involved memories. Following
a Bell state measurement (BSM) at the
repeater with two elementary links having
Werner parameters wA and wB , an end-to-
end link is generated with Werner param-
eter wA · wB .

A5 Single qubit decoherence: To account for
the decoherence of a single qubit while
waiting in memory, we adopt from [14],

[15] the dephasing and asymmetric ampli-
tude damping noise model:

Nt(ρ)= (1−p(t))(M0ρM
†
0+M1ρM

†
1 )

+p(t)Z(M0ρM
†
0+M1ρM

†
1 )Z, (2)

where the density matrix ρ (resp. Nt(ρ) )
represents the state of the system at time 0
(resp. time t), p(t) = (1− e−t/tde)/2 and

M0=

[
1 0

0
√
1−γ(t)

]
, M1=

[
0

√
γ(t)

0 0

]
,

with γ(t) = 1− e−t/tda . Here, tda and tde
are two constants characterising the ampli-
tude damping and the dephasing effect on
the concerned memory, respectively.

A6 Individual phase durations: We assume
that the durations of the atomic phases of
teleportation (which we describe next) and
that of the reconciliation phase (where Al-
ice and Bob check if the protocol was suc-
cessful) follow shifted exponential distri-
bution with parameters specified in Tab. 1.

Under assumption A2, the teleportation pro-
cess is executed in the following order:

• Phase LINK-GEN: Link-level entangle-
ment is established between a user (Al-
ice/Bob) and the repeater.

• Phase L-COMM: Immediately after, suc-
cess/failure of the LINK-GEN phase is
communicated to the user and the repeater.
Note that LINK-GEN and L-COMM run in
parallel for Alice and Bob.

• Phase S-COMM: As soon as both links
are successfully generated, a BSM is per-
formed at the repeater which, if success-
ful, results in end-to-end entanglement be-
tween Alice and Bob. A direct failure
of the measurement operation is observed
with probability (1 − pswap). Otherwise,
the measurement result is communicated
to Alice and Bob.

• Phase T-COMM: Once Alice and Bob share
an entangled resource, teleportation starts
immediately. As part of the process, Alice
sends measurement results to Bob, who
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accordingly applies a unitary operation to
his qubit.

Recall that once all qubits have been tele-
ported, Alice and Bob reconcile their measure-
ments for a fraction of the qubits and decide
if the protocol is successful. We denote the
corresponding phase as K-COMM. Note that if
there is a failure at any intermediate phase, the
protocol restarts immediately.

The set of elementary notations required for
stating some of the main results is given in
Tab. 1. A schematic description of the comple-
tion time of the protocol is shown in Fig. 1 in
terms of the phases mentioned above.

B. MAIN RESULTS

In this section, we state the main result about
the completion time of the BB84 protocol under
assumtions A1 - A6.

Theorem 1 (Completion time of version V1).
The MGF of the completion time (Wn) of the
BB84 protocol is given by:

MWn(t) =
MKC

(t)Dn(t)

1−MKC
(t)(Mn

X(t)−Dn(t))
,

(3)

where Mn
X(t)=(MX(t))n and

Dn(t)
∆
=

⌈αn⌉∑
k=1

M (1)(t; k, ⌈βk⌉)Mn−k
X (t)

1

2n

∑
k−1
α <j≤ k

α

(
n

j

)
.

(4)

For j ≤ l, M (1)(t; l, j) is defined as follows:

M (1)(t; l, 0)
∆
= (m0(t) +m1(t))

l ,

M (1)(t; l, l)
∆
= ml

1(t) , l ∈ N .
(5)

V0: a simpler version of the BB84 protocol where
Bob measures all qubits in the same basis as Alice
encoded and uses all of them for reconciliation,
V1: the actual version of the BB84 protocol,
n: number of qubits teleported in a BB84 attempt,
α: the fraction of the sampled qubits out of the ones
where Alice and Bob’s bases match,
β: the threshold fraction for which measurements
should agree for the protocol to be successful,
MZ(t) = E

(
etZ

)
for an RV Z,

Wn,c: completion time of version V0,
Wn: completion time of version V1,
TGA (resp. TGB): the duration of the phase
LINK-GEN between Alice (resp. Bob) and the re-
peater, distributed as IID SE(λgen, agen),
pgen: link generation attempt success probability,
TCA (resp. TCB): the duration of the phase L-COMM
between Alice (resp. Bob) and the repeater, dis-
tributed as IID SE(λcom, acom),
pswap: BSM success probability at the repeater,
T

′
C : the duration of the phase S-COMM, distributed

as SE(λswap, aswap),
w0 (resp. w): the Werner parameter of a freshly
generated (resp. at a general point in time) link,
tc: the joint coherence time of memories involved
in BSM at the repeater,
T

′′
C : the duration of the phase T-COMM, distributed

as SE(λAB, aAB),
tde (resp. tda): the dephasing (resp. amplitude damp-
ing) constant characterising the concerned quantum
memory,
KC : the duration of the reconciliation phase
K-COMM, distributed as SE(λAB, aAB),
THA (resp. THB): the total time until Alice (resp.
Bob) detects the success of link level entanglement
generation,
VA = THA + TCA,
VB = THB + TCB ,
Tγ : the total duration of failed swap trials in a
teleportation attempt,
X: the duration of a single teleportation attempt, i.e.,
X = Tγ +max{VA, VB}+ T

′
C + T

′′
C ,

Y : the indicator variable denoting that Bob’s mea-
surement result for a qubit coincides with Alice’s.

TABLE 1: Primary notations.
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Further, for l ≥ 2, 1 ≤ j ≤ l − 2:

M (1)(t; l, j)
∆
=

1∑
k=0

(
l − k

j

)
ml−k−j

0 (t)mj+k
1 (t)

+m1(t)

l−2∑
k=j

(m0(t) +m1(t))
l−1−k (6)(

k

j

)
mk−j

0 (t)mj
1(t) ,

and

M (1)(t; l, l−1)
∆
= ml

1(t)+

(
l

1

)
m0(t)m

l−1
1 (t) .

Note that ml
0(t) (resp. ml

1(t)) means (m0(t))
l

(resp. ml
1(t)). Further,

m1(t)
∆
=E

(
etXY

)
=E

(
etX |Y =1

)
P (Y =1) ,

m0(t)
∆
=E

(
etX(1−Y )

)
(7)

=E
(
etX |Y =0

)
P (Y =0) .

The RHS of (7) can be expressed in terms of the
durations of the atomic phases of teleportation
as follows:

m1(t) =
1

4
MTγ

(t)

(
2I(t,∞)MT

′
C
(t)MT

′′
C
(t)

+ w2
0I(t, tc)MT

′
C
(t− 1

tc
)

(
MT

′′
C
(t− 1

tda
)

+MT
′′
C

(
t− 1

tde
− 1

2tda

)))
, with (8)

MTγ
(t) =

pswap

1−(1−pswap)MT
′
C
(t)I(t,∞)

,

and

I(t, s)
∆
=E

(
etmax{VA,VB}e−

|VA−VB |+TCA+TCB
s

)
.

(9)

Also,

MX(t) = MTγ
(t)I(t,∞)MT

′
C
(t)MT

′′
C
(t) .

(10)

Since m0(t) = MX(t)−m1(t), we can compute
it by plugging in expressions for m1(t) and
MX(t). The computation of I(t, s) is described
in Sect. III-C.

Using Thm. 1, we can derive the CDF and a
bound for the tail probability of Wn as follows.

Corollary 1 (CDF of Wn). For s > 0,

P(Wn≤s) =L−1{F (t)}(s), with

F (t)
∆
=

MWn
(−t)

t

(11)

where L−1 denotes the inverse Laplace trans-
form. The numerical computation of (11) is
described in Sect. III-C.

Proof. Let fn and Fn be the density and CDF
of Wn, respectively. Denoting Laplace trans-
form of a function h(t) by L{h(t)}(s), we have
L{fn(t)}(s) = MWn

(−s). Since F
′
n = fn

and Fn(0) = 0 (as Wn > 0), L{Fn(t)}(s) =
MWn(−s)/s, which gives (11).

Corollary 2 (Tail bound of the completion time
of version V1). Using Chernoff’s method,

P(Wn>s) ≤ inf
t∈[0,b)

e−tsMWn(t) , (12)

where b = sup{t ∈ R : MWn
(t) < ∞}. Note

that for any t ∈ [0, b), e−tsMWn(t) is a valid
upper bound for P(Wn > s) which we use for
numerically computing the bound in Sect. III-C.

Proof. This follows directly by applying Cher-
noff’s method to Wn.

III. METHODS AND PROOFS OF RESULTS
A. BACKGROUND
Following [3]–[5], we first express the comple-
tion time W of a failure-prone protocol in terms
of the durations of its trial units. We assume
that each trial has a GENERATE phase, which
depends on r independent tasks. We denote
the duration of these tasks by T1, T2, . . . , Tr.
Once the tasks finish, there is an instantaneous
measurement/detection event which succeeds
with probability p(L1, L2, . . . , Lr, θ), where
{Li}i∈[r] are latent variables that completely
determine {Ti}i∈[r] and θ is a parameter re-
flecting the efficiency of the underlying physical
system. If the measurement event results in
failure, the process starts over immediately and
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(a) (b)

SWAP-GEN S-COMM

LINK-GEN L-COMM

SWAP-GEN

TELEPORT
Tγ

THA

THB

TCB

TCA

T
′
C

KEY-DIST K-COMM

Time until success of BB84 protocol (Wn)

1

2

n
. . .TELEPORT T-COMM

T
′′
C

X1

FIGURE 1: Illustration of the completion time of the BB84 protocol (Wn): (a) describes a trial
unit, independent trials are repeated until success as shown in (b) except for the second row. The
figure is not to scale. A BB84 attempt comprises two phases: teleportation of qubits (KEY-DIST)
and reconciliation (K-COMM). KEY-DIST comprises n sequential TELEPORT+T-COMM trials,
each having a duration distributed as X . The MGF of Wn relates to X via (28). Each trial
within the TELEPORT unit is made of SWAP-GEN and S-COMM phases. S-COMM represents
communication of success/failure of a BSM at the repeater to the end-systems. Further, the duration
of SWAP-GEN is the maximum of the durations of two modules: each representing the completion
time of link-level entanglement generation whose trial unit comprises LINK-GEN (link-level
entanglement generation between an end-system and the repeater) and L-COMM (communication
of success/failure of LINK-GEN) phases. The dotted line on the last row signifies the time one
link has to wait for the other to succeed. Variables used for annotation are defined in Tab. 1 .

carries on until success is observed. Note that
the success or failure of the event has to be duly
communicated so that the process terminates
or moves on to the next trial. We call this
part of a trial the COMMUNICATE phase and

denote its duration by TC . We assume that TC is
independent of {Li}i∈[r] and that the trials are
independent as well. In case the measurement
event takes non-negligible time, we can con-
sider TC to be the total time corresponding to
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W : the completion time of the protocol,
T1, T2, . . . , Tr: the durations of the constituent
tasks of the GENERATE phase,
L1, L2, . . . , Lr: the latent variable completely de-
termining the duration of the GENERATE phase
and success probability of the measurement event,
θ: hardware efficiency parameter for measurement,
p(L1, L2, . . . , Lr, θ): the success probability of
the measurement event,
TC : COMMUNICATE/LOCC phase duration.

TABLE 2: Notations used to describe a
failure-prone protocol in Sect.III-A.

the measurement and communication events. In
this case, the COMMUNICATE phase is termed
as LOCC phase. For a schematic description of
the completion time, see Fig. 2.

Proposition 1. (i) Let us assume that the r tasks
in the GENERATE phase run in parallel. The
MGF of the completion time is then given by:

MW (t)

=
E(etTC )E

(
etmaxi∈[r] Tipθ(L

(1))
)

1− E(etTC )E
(
etmaxi∈[r] Ti(1− pθ(L(1)))

) ,

(13)

for E(etTC )E
(
etmaxi∈[r] Ti(1 − pθ(L

(1)))
)

<
1. Here, [r] = {1, 2, . . . , r}, L(k) =

(L
(k)
1 , L

(k)
2 , . . . , L

(k)
r ) is the vector comprising

the latent variables of the r constituent tasks of
the GENERATE phase for the k-th trial, and

L(k) iid∼ (L1, L2, . . . , Lr) .

(ii) If the r tasks run in sequence instead,

MW (t)=
MTC

(t)E
(
et

∑r
i=1Tipθ(L

(1))
)

1−MTC
(t)E

(
et

∑r
i=1Ti(1−pθ(L(1)))

) .
(14)

Proof. (i) If the tasks run in parallel, the dura-
tion of each trial is given by: U = maxi∈[r] Ti+
TC . Further, if we denote the success of the
measurement event as Y ,

Y |{Li}i∈[r] ∼ Bern(p({Li}i∈[r], θ)).

Let N denote the number of trials until success.
Using the shorthand p(L, θ) = pθ(L),

E
(
etW1N=k|{L(j)}∞j=1

)
=et

∑k
j=1 Ujpθ(L

(k))

k−1∏
j=1

(
1− pθ(L

(j))
)
,

(15)

where Uj = maxi∈[r]{T
(j)
i } + T

(j)
C . Since

the RHS of (15) is non-negative, summing
over k and taking expectation with respect to
{L(j)}∞j=1, we have:

MW (t)

=

∞∑
k=1

E
(
etU1pθ(L

(1))
)
Ek−1

(
etU1(1−pθ(L

(1)))
)

=
E
(
etU1pθ(L

(1))
)

1− E
(
etU1(1− pθ(L(1)))

)
=

E(etTC )E
(
etmaxi∈[r] Tipθ(L

(1))
)

1− E(etTC )E
(
etmaxi∈[r] Ti(1− pθ(L(1)))

) ,

for E(etU1(1− pθ(L
(1)))) < 1, as claimed.

(ii) The result follows simply by observing
that Uj =

∑r
i=1 T

(j)
i + T

(j)
C when tasks are

executed sequence and imitating the proof of
part (i).

The next results are useful for deriving tail
bounds for the completion time W .

Proposition 2. Let I1, I2, . . . , Ir, IC be the
neighbourhoods of zero where the MGFs of
the RVs T1, T2, . . . , Tr, TC exist, respectively.
Further, let I0 denote the neighbourhood of zero
where G(t) = E(etU1(1−pθ(L

(1)))) < 1. Then
the MGF of W exists in

⋂
l∈[r]∪{0,C} Il.

Proof. See Sect. VI-A.

Corollary 3. If T1, T2, . . . , Tr, TC are sub-
exponential, so is W .

Proof. See Sect. VI-A.

Corollary 3 essentially guarantees the exis-
tence of the MGF of W in a neighbourhood
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Time for a trial
Time until first success

GENERATE COMMUNICATE

Measurement

(a) (b)

FIGURE 2: Schematic description of the completion time of a failure-prone protocol: (a) each trial
begins with a GENERATE phase, followed by a measurement/detection event resulting in success
(✓) or failure (×). The measurement outcome is in general dependent on granular details of the
GENERATE phase and is communicated to relevant parties in the COMMUNICATE/LOCC phase. The
durations of the two phases are random and independent. Independent trials are repeated until the
measurement event results in success and the completion time is shown in (b).

of zero, which implies that we can apply Cher-
noff’s method to obtain an upper bound for the
tail probability:

P(W>s)≤ inf
t∈[0,b)

e−tsE(etW ) , (16)

where b = sup{t ∈ R : MW (t) < ∞}.

B. PROOFS OF MAIN RESULTS
We organise this section as follows: we first de-
rive the success probability of a teleportation at-

tempt given the Werner parameter of the entan-
glement resource and the time it takes for Alice
to send her measurement result to Bob during
teleportation. The result is subsequently used to
show that the expressions of m1 and MX in (8)
and (10) are valid. Next, we derive the MGF of
the completion time of the simplified version
called V0, which helps us compute the MGF
for the actual version as stated in Thm. 1.

Lemma 1. Let us assume that teleportation starts with an entanglement resource given by the
Werner parameter w. We also denote the time required for Alice to send the measurement result to
Bob during teleportation by T

′′
C (see Tab. 1). The success probability of teleportation given these

quantities can then be expressed as:

pΛ
∆
=P

(
Y = 1|w, T

′′
C

)
=
1

4

(
2 + we−T

′′
C /tda + we−T

′′
C (1/tde+1/2tda)

)
.

Recall that tde and tda respectively denotes the constants characterising the effect of the dephasing
and the amplitude damping noise on Bob’s quantum memory.

Proof. We start with the density matrix representation of the joint state of Alice and Bob through
the stages of standard teleportation protocol of the data qubit |ϕ⟩ = a |0⟩+b |1⟩, which may be found
in standard textbooks, especially considering |Φ+⟩ = 1√

2
(|00⟩+ |11⟩) as the entanglement resource.

Below we consider that Alice holds the data qubit |ϕ⟩ and |Ψ+⟩ = 1√
2
(|01⟩ + |10⟩) is shared

between Alice and Bob. This is a necessary step towards the calculation of the success probability
of a teleportation attempt because, in the BB84 key distribution example, teleportation starts with
an entanglement resource given by a general Werner state instead of |Φ+⟩. As per convention, the
first and second qubits belong to Alice, whereas the third belongs to Bob. If not written in the
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natural order, the qubit indices are written explicitly outside a parenthesis containing the relevant
state. The stages of standard teleportation protocol with |Ψ+⟩ can be written as follows:

1

2

(
|01⟩⟨01|+|01⟩⟨10|+|10⟩⟨01|+|10⟩⟨10|

)
13

(
a2|0⟩⟨0|+a∗b|1⟩⟨0|+ab∗|0⟩⟨1|+b2|1⟩⟨1|

)
2

=
a2

2

(
|001⟩⟨001|+|001⟩⟨100|+|100⟩⟨001|+|100⟩⟨100|

)
+
a∗b

2

(
|011⟩⟨001|+|011⟩⟨100|+|110⟩⟨001|

+|110⟩⟨100|
)
+
ab∗

2

(
|001⟩⟨011|+|001⟩⟨110|+|100⟩⟨011|+|100⟩⟨110|

)
+
b2

2

(
|011⟩⟨011|+|011⟩⟨110|

+|110⟩⟨011|+|110⟩⟨110|
)

O1−−→a2

2

(
|001⟩⟨001|+|001⟩⟨110|+|110⟩⟨001|+|110⟩⟨110|

)
+
a∗b

2

(
|011⟩⟨001|+|011⟩⟨110|+|100⟩⟨001|

+|100⟩⟨110|
)
+
ab∗

2

(
|001⟩⟨011|+|001⟩⟨100|+|110⟩⟨011|+|110⟩⟨100|

)
+
b2

2

(
|011⟩⟨011|+|011⟩⟨100|

+|100⟩⟨011|+|100⟩⟨100|
)

O2−−→a2

4

(
|001⟩⟨001|+|001⟩⟨110|+|110⟩⟨001|+|110⟩⟨110|+|011⟩⟨001|+|011⟩⟨110|+|100⟩⟨001|+|100⟩⟨110|

+ |001⟩⟨011|+|001⟩⟨100|+|110⟩⟨011|+|110⟩⟨100|+|011⟩⟨011|+|011⟩⟨100|+|100⟩⟨011|+|100⟩⟨100|
)

+
a∗b

4

(
. . .

)
+

ab∗

4

(
. . .

)
+

b2

4

(
. . .

)
=
1

4
|00⟩⟨00|

(
a2|1⟩⟨1|+a∗b|0⟩⟨1|+ab∗|1⟩⟨0|+b2|0⟩⟨0|

)
+
1

4
|01⟩⟨01|

(
a2|0⟩⟨0|+a∗b|1⟩⟨0|+ab∗|0⟩⟨1|

+b2|1⟩⟨1|
)
+

1

4
|10⟩⟨10|

(
a2|1⟩⟨1|−a∗b|0⟩⟨1|−ab∗|1⟩⟨0|+b2|0⟩⟨0|

)
+
1

4
|11⟩⟨11|

(
a2|0⟩⟨0|−a∗b|1⟩⟨0|

−ab∗|0⟩⟨1|+b2|1⟩⟨1|
)
+ ρ0 ,

(17)

where ρ0 denotes the residual terms that do not make any contribution to the final state when
measured in the standard basis. Further, the operations O1 and O2 denote CNOT12 and H1 ⊗ I2,
respectively. Therefore, if teleportation starts with p1 |Φ+⟩⟨Φ+|+p2 |Φ−⟩⟨Φ−|+p3 |Ψ+⟩⟨Ψ+|+
p4 |Ψ−⟩⟨Ψ−| as the entanglement resource, the (unnormalised) state of the system immediately
before Alice’s measurement is given by:

|00⟩⟨00|
(
p1|ϕ⟩⟨ϕ|+p2|ϕz⟩⟨ϕz|+p3|ϕx⟩⟨ϕx|+p4|ϕy⟩⟨ϕy|

)
+|01⟩⟨01|

(
p1|ϕx⟩⟨ϕx|+p2|ϕy⟩⟨ϕy|

+p3|ϕ⟩⟨ϕ|+p4|ϕz⟩⟨ϕz|
)
+|10⟩⟨10|

(
p1|ϕz⟩⟨ϕz|+p2|ϕ⟩⟨ϕ|+p3|ϕy⟩⟨ϕy|+p4|ϕx⟩⟨ϕx|

)
+|11⟩⟨11|

(
p1|ϕy⟩⟨ϕy|+p2|ϕx⟩⟨ϕx|+p3|ϕz⟩⟨ϕz|+p4|ϕ⟩⟨ϕ|

)
+ ρ00 ,

(18)

where ρ00 denotes the terms not contributing to measurement results and |ϕx⟩ , |ϕy⟩, and |ϕz⟩
denote Pauli X, XZ, and Z rotations of |ϕ⟩, respectively. Let us now denote the state of Bob’s qubit
immediately after Alice’s measurement as ρ(|ϕ⟩). Since the communication of the measurement
outcome takes time T

′′
C , the state of Bob’s qubit before applying a unitary operation (ZlXk for

some l, k ∈ {0, 1} according to the outcome) is given by NT
′′
C
(ρ).

Recall that in the BB84 protocol, the data qubit |ϕ⟩ ∈ {|0⟩ , |1⟩ , |+⟩ , |−⟩} and for an entanglement
resource specified by Werner parameter w, p1 = (1+3w)/4, p2 = p3 = p4 = (1−w)/4. Substituting
the values of |ϕ⟩ and {pi}4i=1 in (18), the state ρ(|ϕ⟩) can be further simplified to:

ρ(|ϕ⟩) = 1 + w

2
|ϕ⟩ ⟨ϕ|+ 1− w

2
|ϕ′⟩ ⟨ϕ′| or

1− w

2
|ϕ⟩ ⟨ϕ|+ 1 + w

2
|ϕ′⟩ ⟨ϕ′| ,
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each with probability 1/2. Here |ϕ′⟩ maps (|0⟩ , |1⟩ , |+⟩ , |−⟩) to (|1⟩ , |0⟩ , |−⟩ , |+⟩). Note that
Bob applies a suitable unitary transformation (ZlXk) on NT

′′
C
(ρ(|ϕ⟩)) to recover |ϕ⟩ ⟨ϕ|. Further,

NT
′′
C
(|0⟩⟨0|)= |0⟩⟨0| , NT

′′
C
(|1⟩⟨1|)=γ(·) |0⟩⟨0|+

(
1− γ(·)

)
|1⟩⟨1| ,

NT
′′
C
(|ϕ⟩⟨ϕ|)=

1+(1−2p(·))
√
1−γ(·)

2
|ϕ⟩⟨ϕ|+

1−(1−2p(·))
√
1−γ(·)

2
|ϕ′⟩⟨ϕ′| , |ϕ⟩∈{|+⟩ , |−⟩},

where we have omitted the argument T
′′
C in γ(T

′′
C) and p(T

′′
C) for brevity. This implies:

NT
′′
C
(ρ(|0⟩)) =


(

1+w
2 + γ(·) 1−w

2

)
|0⟩ ⟨0|+ (1− γ(·)) 1−w

2 |1⟩ ⟨1| , w.p. 1
2(

1−w
2 + γ(·) 1+w

2

)
|0⟩ ⟨0|+ (1− γ(·)) 1+w

2 |1⟩ ⟨1| , w.p. 1
2 .

We can now calculate the probability of Bob recovering |0⟩ as (1+w−wγ(·))/2, which turns out
to be the recovery probability for |ϕ⟩ = |1⟩ as well. On the other hand, Bob successfully recovers
|+⟩ or |−⟩ with probability (1+w(1−2p(·))

√
1−γ(·))/2. Since all four data qubits are equally

likely in the BB84 protocol, we have

pΛ =
1

4

(
1 + w − wγ(T

′′
C) + 1 + w(1− 2p(T

′′
C))

√
1− γ(T

′′
C)

)
=
1

4

(
2 + we−T

′′
C /tda + we−T

′′
C (1/tde+1/2tda)

)
.

Proof of (8) and (10). First, we refer the
reader to Fig. 1, where the teleportation du-
ration of a single qubit is shown and its
constituent phases and respective durations are
annotated. Recall that THA (resp. THB) denotes
the time until Alice (resp. Bob) successfully
generates a link-level entanglement and the
communication of this event takes TCA (resp.
TCB) amount of time. To derive the expression
for MTγ

(t) in (8), we first see that the swap
failure time Tγ comprises (Geo(pswap) − 1)
independent swap trials, each having a duration
of max{THA + TCA, THB + TCB}+ T

′
C . Ap-

plying (13) now leads to the given expression.
The expression for MX(t) in (10) now fol-

lows from the break-down of the qubit telepor-
tation time X given in Tab. 1:

X = Tγ +max{VA, VB}+ T
′
C + T

′′
C , (19)

the definition of I(t, s) in (9), and the fact
that the components in the RHS above are

independent.
Next, we establish the formula for m1(t).

Due to assumption A4, a successful swap thus
leads to an end-to-end entanglement between
Alice and Bob, characterised by the Werner
parameter:

w2
0e

−(|THA+TCA−THB−TCB |+TCA+TCB)/tc ,

where w0 denotes the Werner parameter of
a freshly generated link and tc denotes the
joint coherence time of the involved memories.
Teleportation takes further T

′
C time to start and

thus begins with the following entanglement
resource:

w = w2
0e

−(|VA−VB |+TCA+TCB+T
′
C)/tc .

Recall from Tab. 1 that VA = THA +
TCA (resp. for B). The decoherence of Bob’s
qubit while Alice sends the measurement re-
sults (during the time span T

′′
C ) is cap-

tured by the noise model described in as-
sumption A5. According to Lemma 1, given
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(THA, TCA, THB , TCB , T
′
C , T

′′
C), the teleporta-

tion attempt succeeds with probability

pΛ =
1

4

(
2+we−T

′′
C /tda+we

−T
′′
C ( 1

tde
+ 1

2tda
))
.

(20)

Since m1(t) = E
(
etXY

)
, we can now use

the expression for X and P
(
Y = 1|w, T ′′

C

)
to

calculate the expectation, which leads to (8).

We now prove Lemma 2, which helps us
express the MGF of the completion time of the
actual version V1 as formalised in Thm. 1.

Lemma 2 (Completion time of version V0). We
define c = ⌈βn⌉. The MGF of the completion
time (Wn,c) of version V0 is then given by:

MWn,c(t) =
MKC

(t)M (1)(t;n, c)

1−MKC
(t)M (0)(t;n, c)

,

where M (1) is defined in Thm. 1 and

M (0)(t; l, j) = (m0(t) +m1(t))
l −M (1)(t; l, j).

(21)
Proof. Recall that in version V0, Bob measures
all teleported qubits in the same bases as Alice
encoded them and all of them are used for
reconciliation. Let us denote by Xi the duration
of the teleportation of the i-th qubit. Further,
let Yi be the indicator variable assuming the
value 1 when Bob’s measurement result for
the i-th qubit agrees with what Alice originally
encoded. Therefore, (Xi, Yi)

iid∼ (X,Y ). Fur-
ther, the duration of a BB84 attempt is given
by: KC +

∑n
i=1 Xi. Now, let c be the success

threshold of the protocol, i.e., a BB84 attempt
succeeds iff

∑n
i=1 Yi ≥ c. Thus, using part (ii)

of Prop. 1, we have:

MWn,c
(t)=

MKC
(t)E(et

∑n
i=1 Xi1

∑n
i=1 Yi≥c)

1−MKC
(t)E(et

∑n
i=1Xi1

∑n
i=1Yi<c)

.

(22)

Let us define

M̄ (1)(t; l, j)
∆
= E(et

∑l
i=1 Xi1∑l

i=1 Yi≥j) ,

M̄ (0)(t; l, j)
∆
= E(et

∑l
i=1Xi1∑l

i=1Yi<j) .

To complete the proof, we need to show
that M̄ (1) ≡ M (1) and M̄ (0) ≡ M (0).
Note that M̄ (1)(t; 1, 0) = m0(t)+m1(t) and
M̄ (1)(t; 1, 1)=m1(t). Since (Xi, Yi)

iid∼ (X,Y ),

M̄ (1)(t; l, 0) = (m0(t) +m1(t))
l ,

M̄ (1)(t; l, l) = ml
1(t) , l ∈ N .

(23)

Now, for l ≥ 2, 1 ≤ j ≤ l,

M̄ (1)(t; l, j)

= E
(
et

∑l
i=1 Xi(1Y1=01

∑l
i=2 Yi≥j

+ 1Y1=11
∑l

i=2 Yi≥j−1)
)

(24)

= E(etX11Y1=0)E(e
t
∑l

i=2 Xi1∑l
i=2 Yi≥j)

+E(etX11Y1=1)E(e
t
∑l

i=2Xi1∑l
i=2Yi≥j−1)

= m0(t)M̄
(1)(t; l − 1, j)

+m1(t)M̄
(1)(t; l − 1, j − 1) .

Here, the second and the third equality follow
from the fact that (Xi, Yi)

iid∼ (X,Y ).
To solve the recurrence relation, let us

introduce the following shorthand: al,j =
M̄ (1)(t; l, j), m0 = m0(t), and m1 = m1(t)
Therefore, a1,0 = m0 + m1, a1,1 = m1, and
for l ≥ 2, 1 ≤ j ≤ l − 1,

al,j = m0al−1,j +m1al−1,j−1 . (25)

Also, (23) can be rewritten as:

al,0=(m0+m1)
l, al,l=ml

1, l ∈ N. (26)

We now define the generating function:

Al(x)
∆
=

l∑
j=0

al,jx
j , l ∈ N .

Multiplying both sides of (25) by xj and sum-
ming over 1 ≤ j ≤ l − 1, we have for l ≥ 2:

Al(x) =(m0 +m1x)Al−1(x)

+ (m0 +m1)
l−1m1 ,

(27)
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with A1(x) = m0 +m1 +m1x. Note that we
have used (26) to arrive at (27). For l ≥ 2,
recursive substitution in (27) leads to:

Al(x) = (m0 +m1x)
l−1A1(x)

+m1

l−2∑
k=0

(m0 +m1x)
k(m0 +m1)

l−1−k ,

which, after some calculations, yields:

al,l−1 = ml
1 +

(
l

1

)
m0m

l−1
1 ,

al,j=

(
l

j

)
ml−j

0 mj
1+

(
l − 1

j

)
ml−1−j

0 mj+1
1

+m1

l−2∑
k=j

(m0 +m1)
l−1−k

(
k

j

)
mk−j

0 mj
1 ,

for 1 ≤ j ≤ l − 2. It is now straight-
forward to see that M̄ (1) ≡ M (1). Further,
E
(
etX

)
= m0(t) + m1(t), which establishes

M̄ (0) ≡ M (0).

Proof of Thm. 1. Recall that out of the B ∼
Bin(n, 1/2) qubits where Bob’s measurement
bases agree with Alice’s, B1 = ⌈αB⌉ are sam-
pled without replacement for checking the cor-
rectness, and the protocol is deemed successful
if the corresponding measurements match for
at least β fraction of the sample. The protocol
has to be rerun until B1 ≥ 1. Let Zi denote
the Bernoulli RV assuming value 1 iff the i-th
qubit is sampled, i.e., B1 =

∑n
i=1 Zi. Further,

let ki’s for i ∈ [B1] be the indices such that
Zki = 1. Therefore, the protocol is successful
when B1 ≥ 1 and

∑B1

i=1Yki
≥ βB1, where Yj

is the indicator variable that takes value 1 when
Bob’s measurement for the j-th qubit agrees
with its original value. Denoting

D̄n(t)
∆
=E(et

∑n
1 Xi1∑B1

i=1Yki
≥βB1

1B1≥1),

(28)

we have:

MWn(t) =
MKC

(t)D̄n(t)

1−MKC
(t)(Mn

X(t)− D̄n(t))
,

due to part (ii) of Prop. 1. We now show that
indeed D̄n ≡ Dn. Observe that

D̄n(t) =

⌈αn⌉∑
k=1

M (1)(t; k, ⌈βk⌉)Mn−k
X (t)

P(B1 = k)

=

⌈αn⌉∑
k=1

M (1)(t; k, ⌈βk⌉)Mn−k
X (t)

1

2n

∑
k−1
α <j≤ k

α

(
n

j

)
,

which completes the proof.

C. NUMERICAL COMPUTATION OF THE CDF
AND THE TAIL PROBABILITY OF THE
COMPLETION TIME
We first describe the numerical computation of
I(t, s) in (9), which is subsequently used to
numerically compute MWn

(t). Note that THA

(resp. THB) is given by the sum of the duration
of NA (resp. NB) LINK-GEN and NA − 1
(resp. NB − 1)L-COMM trails, where NA (resp.
NB) denotes the number trials needed for Alice
(resp. Bob) to establish a link-level entangle-
ment successfully, i.e., NA, NB

iid∼ Geo(pgen).
Also, THA and THB are IID. Now,

I(t, s)

=E

(
etmax{VA,VB}e−

|VA−VB |+TCA+TCB
s

)
=2e(t−

2
s )acom

(
λcom

λcom+
2
s−t

− 2λcom

2λcom+
2
s−t

)
E
(
e(λcom+

1
s )THAe−(λcom+

1
s−t)THB1THB>THA

)
+

λcom

λcom+
2
s−t

E
(
e

1
sTHAe−( 1

s−t)THB1THB>THA

)
.

To evaluate this expectation, we derive an
expression for the quantities of the form
E
(
eηTHAe−(η−t)THB1THB>THA

)
. Note that

THA =
∑NA

i=1 T
(i)
GA +

∑NA−1
i=1 T

(i)
CA, where 1

T
(i)
GA

iid∼ TGA and T
(i)
CA

iid∼ TCA. We fur-
ther denote S

(j)
GA =

∑j
i=1 T

(i)
GA, S

(j)
CA =

1Sums of the form
∑0

1 are zero by convention.
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i=1 T

(i)
CA (resp. for B). Clearly, S

(j)
GA

d
=

jagen + Gamma(j, λgen), S
(j)
CA

d
= jacom +

Gamma(j, λcom), and S
(j)
GA and S

(j)
CA are inde-

pendent for j ∈ N (resp. for B). Therefore,

E
(
eηTHAe−(η−t)THB1THB>THA

)
=p2gen

∞∑
l=0

∞∑
k=0

(1− pgen)
k+lE

(
eη(S

(l+1)
GA +S

(l)
CA)

e−(η−t)(S
(k+1)
GB +S

(k)
CB)

1
S

(k+1)
GB +S

(k)
CB>S

(l+1)
GA +S

(l)
CA

)
.

(29)

We perform numerical integration to evaluate
the expectation in the summand of (29), which
is straightforward as S(j)

GA and S
(j)
CA are indepen-

dent for j ∈ N and the corresponding densities
are known (shifted Gamma). Subsequently, we
compute the sum until a cut-off point (e.g.,
0 ≤ l ≤ 128, 0 ≤ k ≤ 128). Since we
only need to evaluate I(t, s) at s = ∞ and
s = tcoh, (29) has to be evaluated only for
η = λcom + 1/tcoh, 1/tcoh, λcom, 0.

To calculate the CDF of Wn according
to (11), we use off-the-shelf numerical in-
verse Laplace transform algorithms such as
invertlaplace of the mpmath library of
Python. Further, we calculate the Chernoff’s
bound numerically as follows:

P(Wn>s) ≤min
j∈[r]

{e−tsMWn
(tj)} ,

where MWn(tj) < ∞ and r ∈ N, e.g., 10. Note
that this is an approximate bound as MWn

(tj)’s
are numerically estimated using (29). In future
work, we plan to calculate the error bounds for
this estimation, which would further produce an
upper bound for the tail probability.

IV. SYNTHETIC SIMULATION OF THE
COMPLETION TIME OF THE BB84
PROTOCOL
As seen in Sect. II, successful realisation of
the BB84 protocol requires repeated execution
of teleportation trials, which are composed of

further generation and communication phases.
This makes simulating the completion time of
the protocol (Wn) time-consuming. To that end,
we propose an algorithm to efficiently simulate
the duration Wn when the distributions of the
duration of individual phases follow shifted
exponential distribution (assumption A6) and
the respective parameters are known or can be
estimated.

Recall that as part of the BB84 protocol, a
fraction of the teleported qubits are checked for
correctness and the remaining are used as key
bits, i.e., left unchecked. The central idea of
the proposed algorithm is to find the distribu-
tion of the count of unchecked qubits, qubits
teleported successfully, and those teleported
unsuccessfully until completion. Subsequently,
we fit a distribution to the teleportation time
of a single qubit (i) unconditionally, (ii) given
the teleportation attempt is successful, and (iii)
given the attempt ended in a failure. The final
duration Wn is then given by the sum total of
(i) the aggregated unconditional teleportation
time, (ii) the aggregated successful teleportation
time, (iii) the aggregated failed teleportation
time and (iv) the total reconciliation time. The
acceleration of our scheme is due to the fact
that such aggregated duration can be simulated
in a constant number of steps, irrespective of
the number of qubits n for an appropriate
choice of distributions for the single qubit
teleportation times. Note that this method is
advantageous only when we assume that the
simulation exercise will be performed for a
large number of times. In that case, distribution
fitting can be done once and the output can
be reused for subsequent simulation exercises,
which would make this approach advantageous.

The next result states that the completion
time of a failure-prone protocol can be sim-
ulated backwards if the distributions of the
individual phase durations are known given the
success/failure of an attempt. The result follows
simply by rearranging the terms of the MGF
from (13).
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Lemma 3. Let Y be a Bernoulli RV and
X,W, TC be RVs such that

E
(
etW

)
=

MTC
(t)E

(
etX1Y=1

)
1−MTC

(t)E(etX1Y=0)
,

where MTC
(t) = E

(
etTC

)
and the MGFs of X

and TC exist in a neighbourhood of zero. Then,

W
d
= W̃ =

N∑
j=1

Tj +

N−1∑
j=1

X
(0)
j +X

(1)
1 ,

where Tj’s, X(0)
j ’s, X(1)

j ’s, and N are drawn
independently from the following known distri-
butions: Tj

iid∼ TC , X(0)
j

iid∼ X|Y = 0, X(1)
j

iid∼
X|Y = 1 for j ∈ N, and N ∼ Geo(P (Y = 1)).

Proof. See Sect. VI-A.

Let us now recall a few features of the BB84
protocol from Sect. II: it is deemed successful
when at least one qubit is sampled, and out of
the sampled qubits, a certain fraction (β) results
in faithful teleportation. Reusing notations from
Lemma 3 and Sect. II, let N denote the number
of times the protocol has to be run to see the
first success. That is,

N ∼ Geo(P(U = 1)) , where
U = 1∑B1

i=1Yki
≥βB1

1B1≥1 ,

and ki’s for i ∈ [B1] denote the exhaustive
set of indices for which Zki = 1. Applying
Lemma 3, (3) gives:

Wn
d
= W̃n =

N∑
j=1

Tj +

N−1∑
j=1

V
(0)
j + V

(1)
1 ,

(30)

where Tj
iid∼ TC , V

(l)
j

iid∼
∑n

i=1 Xi|U =
l, for l ∈ {0, 1} and j ∈ N, and N ∼
Geo(P (U = 1)).

Now for a single BB84 trial, let NS and NF

respectively denote the number of qubits out of
the sampled ones that were faithfully teleported
and those ended in a failure, i.e.,

NS =

B1∑
i=1

Yki
, NF =

B1∑
i=1

(1− Yki
) .

The following result provides a way to simulate
V

(0)
j ’s and V

(1)
j ’s.

Proposition 3. Let (N (l)
S , N

(l)
F ) ∼ (NS , NF )|U =

l for l ∈ {0, 1}. Then,

V
(l)
j

d
= Ṽl=

N
(l)
S∑

i=1

X
(1)
i +

N
(l)
F∑

i=1

X
(0)
i +

n−N
(l)
S −N

(l)
F∑

i=1

Xi ,

where X
(l)
j

iid∼ X1|Y = l, l ∈ {0, 1} and all
summands on the RHS are drawn independently
of each other and of (N (l)

S , N
(l)
F ) as well.

Proof. See Sect. VI-A.

We can now use (30) together with Prop. 3
to simulate Wn, the completion time of the pro-
tocol, provided we can simulate (i) the number
of protocol runs N , (ii) the conditional counts
of teleportation successes and failures in a trial
(NS , NF )|U , and (iii) the single qubit telepor-
tation durations distributed as X , X|Y = 1, and
X|Y = 0. For simulating N , we observe that

P (U = 1)

=

⌈αn⌉∑
k=1

P

( k∑
j=1

Yij ≥ βk

)
P(B1 = k)

=

⌈αn⌉∑
k=1

P

(
Bin(k,m1(0))≥βk

)
1

2n

∑
k−1
α <j≤ k

α

(
n

j

)
,

where we have used the fact that Yi’s are IID
Bernoulli with P(Yi = 1) = m1(0). Denoting
P (U = 1)=p1,

P(NS = s,NF = f |U = 0)

=(1− 1 s
s+f ≥β) P

(
Bin(s+ f,m1(0))=s

)
1

2n

∑
s+f−1

α <j≤ s+f
α

(
n

j

)
(1− p1)

−1. (31)
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Similarly,

P(NS = s,NF = f |U = 1)

=P(NS = s,NF = f, U = 1)p−1
1

=1 s
s+f ≥β P

(
Bin(s+ f,m1(0))=s

)
1

2n

∑
s+f−1

α <j≤ s+f
α

(
n

j

)
p−1
1 . (32)

Finally, we need a way to simulate from the
distributions of the single qubit teleportation
times: X , X|Y = 1, and X|Y = 0. We ap-
proximate them by three shifted Coxian phase-
type distributions using the method of moments.
Note that the moments of the qubit teleportation
times can be calculated using (8) and (10).
The same equations also help us determine the
shifts, which turn out to be aW = agen +
acom + aswap + aAB for all three distributions.
Since a Coxian phase-type distribution with d
phases has (2d−1) parameters, we can compute
the first (2d − 1) moments as functions of
the parameters and solve for the parameters by
equating them to the moments derived from (8)
and (10). Note that the distribution fitting is
done only once and the output can be reused
for subsequent simulation exercises.

The choice of Coxian phase-type distribu-
tion is motivated by the fact that their IID
sum can be expressed in a compact form
and thus can be efficiently simulated. Note
that the sum of k IID Coxian phase-type
RVs with parameters (λ1, . . . , λd, q1, . . . , qd−1)
is distributed as

∑d
l=1 Gamma(Dl, λl) where

Dl ∼ Bin(Dl−1, ql−1) for l ≥ 2 and D1 = k.
The efficiency of our approach follows from
the fact that, on average, it needs to simulate
(2d+ 1 + 2

p1
) RVs per observation vis-à-vis

(n((
2+4(1−pgen)
1−(1−pgen)2

+ 1) 1
pswap

+ 1) + 1) 1
p1

required
for the full-scale approach. Recall that p1 =
P (U = 1), (1 − pswap) denotes the observable
BSM failure probability at the repeater, and pgen
denotes the link-level entanglement generation
success probability.

Algorithm 1: Synthetic Simulation of
the completion time of the BB84 proto-
col

Data: n ∈ N, α > 0, β > 0, agen > 0,
acom > 0, aswap > 0, aAB > 0,
λgen > 0, λcom > 0, λswap > 0,
λAB > 0, 0 < pgen < 1, 0 < pswap < 1,
tc > 0, tde > 0, tda > 0, d ∈ N.

Result: Wn

Preprocessing:
aW ← agen + acom + aswap + aAB

p1←
∑⌈αn⌉

k=1 P

(
Bin(k,m1(0))≥

βk

)
1
2n

∑
k−1
α

<j≤ k
α

(
n
j

)
;

Estimate (λ
(1)
1 , . . . , λ

(1)
d , q

(1)
1 , . . . , q

(1)
d−1) for

X|Y = 1 via moment-matching;
Estimate (λ

(0)
1 , . . . , λ

(0)
d , q

(0)
1 , . . . , q

(0)
d−1) for

X|Y = 0 via moment-matching;
Estimate (λ

(u)
1 , . . . , λ

(u)
d , q

(u)
1 , . . . , q

(u)
d−1) for

X via moment-matching;
Simulation:
Draw N ∼ Geo(p1);
Draw (S0, F0) according to (32);
for i = 1 : N − 1 do

Draw (Si, Fi) according to (31);
end
S ←

∑N−1
j=0 Si;

F ←
∑N−1

j=0 Fi;
Ñ ← nN − S − F ;
A0 ← S;
Draw W

(0)
A ∼ Gamma(A0, λ

(1)
1 );

B0 ← F ;
Draw W

(0)
B ∼ Gamma(B0, λ

(0)
1 );

C0 ← Ñ ;
Draw W

(0)
C ∼ Gamma(C0, λ

(u)
1 );

for i = 1 : d− 1 do
Draw Ai ∼ Bin(Ai−1, q

(1)
i );

Draw W
(i)
A ∼ Gamma(Ai, λ

(1)
i+1);

Draw Bi ∼ Bin(Bi−1, q
(0)
i );

Draw W
(i)
B ∼ Gamma(Bi, λ

(0)
i+1);

Draw Ci ∼ Bin(Ci−1, q
(u)
i );

Draw W
(i)
C ∼ Gamma(Ci, λ

(u)
i+1);

end
Draw C ∼ Gamma(N,λAB)
Wn ← NaAB + C + nNaW +∑d−1

i=0 (W
(i)
A +W

(i)
B +W

(i)
C ).
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(a) pgen = 10−3 (b) pgen = 10−2 (c) pgen = 10−1

FIGURE 3: Numerical estimates of the CDF via inverse Laplace transform (‘ILT’) and the Chernoff’s
bound (‘Chernoff’) vis-à-vis the empirical tail probability (‘Empirical’) of the completion time (Wn)
of the BB84 protocol for n = 50 qubits; the shaded region represents 95% confidence interval for
the CCDF computed according to [16, Thm. 2.4]. The empirical distribution is obtained by running
a full-scale simulation; see Sect. V for an exhaustive list of parameters of the simulation. Time unit:
mean link-level entanglement generation time.
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FIGURE 4: Comparison of the empirical den-
sities of the protocol completion time Wn from
a (a) full-scale and a (b) synthetic simulation.
Parameters: n = 50 qubits; link generation suc-
cess probability pgen = 10−2; other parameters
are provided in Sect. V.

The complete simulation scheme is for-
malised in Algo. 1. We also compare our ap-
proach to a full-scale simulation based on 106

observations in (i) Fig. 4, where the histograms
of the outputs from the two approaches are
compared, and in (ii) Fig. 5, where a QQ-plot of
these outputs is presented. In the synthetic ap-
proach, we use Coxian phase-type distributions

0 1 2 3
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FIGURE 5: Q-Q plot of the protocol completion
times from a full-scale and a synthetic sim-
ulation; the experimental setup is identical to
Fig. 4.

with 7 phases as they turn out to be reasonably
good fits. The exhaustive list of parameters used
for the simulations can be found in Sect.V.

V. NUMERICAL EVALUATIONS
In this section, we evaluate the estimate of
the CDF and the tail bound derived earlier in
Sect.II numerically. The time unit across plots
is the mean link-level entanglement generation
time. In the context of the completion time of
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the BB84 protocol, we first run a full-scale
simulation and compare the bound/estimate
with the empirical CCDF. The comparison
is shown in Fig. 3 for three different val-
ues of the entanglement generation probability
{10−1, 10−2, 10−3} to reflect different levels
of hardware efficiency. In the experiments, we
assume that the phases LINK-GEN, L-COMM,
and S-COMM follow SE( 12 , 2) distribution, i.e.,
agen = acom = aswap = 1

2 and λgen = λcom =
λswap = 2, while the phases T-COMM and
K-COMM are assumed to follow SE(1, 1) dis-
tribution, i.e., aAB = 1 and λAB = 1. The
Werner parameter for a fresh link is assumed
to be w0 = 0.98. Further, the constants char-
acterising memory decoherence are taken to be
tc = tde = tda = 4 × 104. We run the BB84
protocol for n = 50 qubits, while α = 30%
of the qubits with the same measurement bases
are chosen for reconciliation. The protocol is
deemed successful if we sample at least one
qubit for reconciliation and the measurement
results agree for at least β = 95% cases. In
the resulting plots in Fig. 3, we see that our
estimate of the CDF matches closely with the
empirical CDF for sampled points.

Next, we demonstrate the effectiveness of our
simulation scheme in Sect. IV. We compare
the protocol completion times generated from
our scheme vis-á-vis a full-scale simulation for
a system with entanglement generation proba-
bility of 10−2 while keeping other factors the
same as in Fig. 3. We compare the resulting
empirical densities in Fig. 4, whereas a Q-Q
plot is presented in Fig. 5. We observe good
agreement between the two approaches.

VI. CONCLUSION
In this work, we did a performance analysis of
the completion time of the BB84 protocol. Our
setup assumes that the sender and the receiver
are connected by a single quantum repeater and
that there is no eavesdropping in the quantum
channel between them. To reflect the current
quantum hardware standards, we however con-
sider the possibility of failure at every indi-

vidual phase of teleportation and take into ac-
count the resulting effect of decoherence on the
performance of the protocol. We subsequently
provide a method to calculate the MGF of the
completion time, which lets us calculate an esti-
mate of the CDF via inverse Laplace transform
and a numerical bound for the corresponding
tail probability. Making certain assumptions on
the distributions of the durations of individual
phases, we also propose an efficient simulation
scheme for the completion time. The simulation
scheme is based on the idea that the single qubit
teleportation time can be well-approximated by
a Coxian phase-type distribution, which can be
efficiently aggregated to arrive at the comple-
tion time of the whole protocol.

APPENDIX
A. DEFERRED PROOFS
Proof of Prop. 2. For t ≤ 0,

etmaxi∈[n] Tipθ(L1) ≤ etT1 .

Similarly, for t > 0,

etmaxi∈[n] Tipθ(L1) ≤ et
∑n

j=1 Tj .

Since MTC
(t) ≥ 0, for t ∈ R we have:

MTC
(t)E

(
etmaxi∈[n] Tipθ(L1)

)
≤MTC

(t)max
{
E(etT1),

n∏
j=1

E(etTj )
}
.

The RHS is finite on
⋂

l∈[n]∪{c} Il. The same
holds for the denominator of the RHS of (13).
Further, the infinite sum on the second line
of (13) converges on I0, which proves the
claim.

Proof of Prop. 3. Recall that an RV is sub-
exponential iff its MGF exists in a neighbour-
hood of zero. Thus, given the hypothesis, it
is enough to show that I0 is non-empty. For
t1 < t2 and t1, t2 ∈ ∩i∈[n]∪{C}Il,

G(t2)−G(t1)

=E
(
(et2X1 − et1X1)(1− pθ(L1))

)
≤E(et2X1)− E(et1X1) .
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Thus, continuity of the MGF of X1 in
∩i∈[n]∪{C}Il implies continuity of G. Further,
barring the trivial case pθ(L1) ≡ 0, G(0) =
E(1−pθ(L1)) < 1. Since G is continuous, I0
is non-empty as claimed.

Proof of Lemma 3. Denoting pl = P (Y = l)

and ϕl(t) = E
(
etX

(l)
1

)
= E

(
etX1Y=l

)
/pl for

l ∈ {0, 1},

E
(
etW̃

)
=MTC

(t)ϕ1(t)

∞∑
j=0

pj0p1(MTC
(t)ϕ0(t))

j

=
p1MTC

(t)ϕ1(t)

1− p0MTC
(t)ϕ0(t)

=E
(
etW

)
.

Following the argument of Corr. 3, MGFs of
W and W̃ exist in a neighbourhood of zero,
implying that W d

= W̃ .

Proof of Prop. 3. Observe that

E
(
etV

(l)
j

)
=E

(
et

∑n
1 Xi |U= l

)
=
∑
k,d

E
(
et

∑n
1 Xi |

n∑
1

YiZi=k,

n∑
1

Zi=d, U= l
)

P
( n∑

1

YiZi=k,

n∑
1

Zi=d|U= l
)

=
∑
k,d

E
(
et

∑n
1 Xi |

n∑
1

YiZi=k,

n∑
1

Zi=d
)

P
( n∑

1

YiZi=k,

n∑
1

Zi=d|U= l
)
,

where the last equality follows from the defini-

tion of U . Now, for X ∼ X1 and Y ∼ Y1,

E
(
et

∑n
1 Xi |

n∑
1

YiZi=k,

n∑
1

Zi=d
)

=

k+n−d∑
r=k

E
(
et

∑n
1 Xi |

n∑
1

Yi=r,

n∑
1

YiZi=k,

n∑
1

Zi=d
)
P
( n∑

1

Yi=r|
n∑
1

YiZi=k,

n∑
1

Zi=d
)

=

k+n−d∑
r=k

E
(
et

∑n
1 Xi |

n∑
1

Yi=r
)

P
( n∑

1

Yi=r|
n∑
1

YiZi=k,

n∑
1

Zi=d
)

=Ek
(
etX |Y =1

)
Ed−k

(
etX |Y =0

)
n−d∑
r=0

(
n− d

r

)
Er

(
etX |Y =1

)
(P (Y = 1))r

En−d−r
(
etX |Y =0

)
(P (Y = 0))n−d−r

=Ek
(
etX |Y =1

)
Ed−k

(
etX |Y =0

)
En−d

(
etX

)
.

Therefore,

E
(
etV

(l)
j

)
=
∑
k,d

Ek
(
etX |Y =1

)
Ed−k

(
etX |Y =0

)
En−d

(
etX

)
P
( n∑

1

YiZi=k,

n∑
1

Zi=d|U= l
)

=
∑
k,d

Ek
(
etX |Y =1

)
Ed

(
etX |Y =0

)
En−d−k

(
etX

)
P
(
NS=k,NF =d|U= l

)
,

which establishes V
(l)
j

d
= Ṽl for l ∈ {0, 1}.
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