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Parallel server frameworks are widely deployed in modern large-data processing applications. Intuitively,

splitting and parallel processing of the workload provides accelerated application response times and scaling

flexibility. Examples of such frameworks include MapReduce, Hadoop, and Spark. For many applications, the

dynamics of such systems are naturally captured by a Fork-Join (FJ) queuing model, where incoming jobs

are split into tasks each of which is mapped to exactly one server. When all the tasks that belong to one

job are executed, the job is reassembled and leaves the system. We consider this behavior at the output as a

synchronization constraint.

In this paper, we study the performance of such parallel systems for different server properties, i.e., work-

conservingness, phase-type behavior, and as suggested by recent evidence, for bursty input job arrivals. We

establish a Large Deviations Principle (LDP) for the steady-state job waiting times in an FJ system based on

Markov-additive processes. Building on that, we present a performance analysis framework for FJ systems

and provide computable bounds on the tail probabilities of the steady-state waiting times. We validate our

bounds using estimates obtained through simulations. In addition, we define and analyze provisioning, a

flexible division of jobs into tasks, in FJ systems. Finally, we use this framework together with real-world

traces to show the benefits of an adaptive provisioning system that adjusts the service within an FJ system

based on the arrival intensity.
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1 INTRODUCTION
Recent infrastructural advancement of cloud computing and large-scale data processing has brought

about massive deployment of parallel-server systems. Frameworks, such as MapReduce [21, 51], its
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Fig. 1. MapReduce as an FJ system. Incoming jobs are first split into tasks and then “mapped” to N heteroge-
neous servers that work parallelly. A job leaves the system when all of its tasks are executed.

implementation Hadoop [32] and Spark [62] are dominant in today’s world. Such systems seek

to reap the benefits of parallelization. However, often they are also subject to a synchronization

constraint, because the final output is composed of outputs from all the servers. This makes

performance evaluation of such systems interesting. Fork-Join (FJ) queuing models naturally

capture the dynamics of system parallelization under synchronization constraints [38, 55, 58].

In Figure 1, we present an FJ system abstraction of the MapReduce. Arriving jobs are first split

into tasks each of which is mapped exactly to one server executing the map operation. A job

leaves the system when all of its tasks are executed. We categorize the servers depending on

whether they are work-conserving or not. Servers that start servicing the task of the next job, if

available, immediately after finishing the current job, are labeled work-conserving. Servers that

are not work-conserving, referred to as “blocking" servers hereinafter, wait until all servers finish
servicing their current tasks before starting the task of the next job. Blocking systems, also known

as split-merge systems [48], impose an additional synchronization barrier at the input. Nevertheless,

split-merge systems can be treated as a special case of the work-conserving (non-blocking) system

(see [36, 37, 48]). In particular, an FJ system with N blocking servers can be viewed as a hypothetical

queuing system with just one work-conserving server whose service time distribution is the same

as the distribution of the maximum order statistic of the individual service times of the N servers

of the original FJ system. We shall use this observation for the purpose of performance evaluation

of blocking systems using the tools developed for work-conserving systems.

As a metric of performance in an FJ system, we consider the waiting time, which we define as

the amount of time a job waits until its last task starts being serviced from moment of its arrival.

Its stochastic behavior is governed by the nature of inter-arrival times of the jobs, i.e., the arrival
process, and the service times of the servers. In the simplest case, one assumes a renewal arrival

process, independent and identically distributed (iid) service times and mutually independent

servers. However, recent evidences suggest that this assumption is untenable for various reasons.

Arrival processes such as the input to a MapReduce system or datacenter traffic may not be renewal

and may exhibit considerable burstiness [19, 33, 39, 61]. Moreover, the service times at different

servers may also be inherently dependent, and may show phase-type behavior. The behavior

of the inter-arrival times and the service times may change drastically depending on or being

controlled by certain exogenous factors. For the purpose of mathematical abstraction, we use

the term “environment” for these exogenous factors. In this paper, to account for the effects of

changing environment, we present a Markov-additive process [35] model (see Figure 3), and show

how particular application scenarios can be derived as special cases of it. In particular, we cover
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Fig. 2. Arrival and service processes of an FJ system. The random variable Ai denotes the inter-arrival time
between the i-th and the i+1-th jobs. Each incoming job is split into N tasks and assigned to N heterogeneous
servers. The service time at the n-th server for the task of the i-th job is denoted by Sn,i . A job leaves the
system when all of its tasks are served.

three application scenarios: (a) non-renewal (Markov-modulated) arrivals, (b) servers showing
phase-type behavior, and (c)Markov-modulated (MM) arrivals and service. We also bring in the

notion of provisioning, an umbrella term used for a rule that decides on the FJ job division into

tasks, or that regulates service rates either reactively or proactively. Proactive provisions anticipate
the change of environment, and act accordingly, while reactive provisions only react to the current

environment (e.g., see [47]).
An exact analysis of an FJ system with more than two servers in a general setup remains elusive

[6, 13] because the steady-state waiting time distribution is hard to obtain in closed form. One

approach to circumvent this problem, which we take in this paper, is to bound the tail probabilities

of the steady-state waiting times [55]. In [55], the authors provide upper bounds on the tail

probabilities of the steady-state waiting and response times in homogeneous FJ systems with

identical servers. They consider renewal and two-state Markov-modulated arrival processes with

iid service times across N servers. In contrast to [55], we consider FJ systems in full generality. We

consider a heterogeneous FJ system; allow the modulating Markov chain to lie in an arbitrary state

space (even uncountable); and allow both arrival and service processes to be modulated and hence,

correlated. Moreover, our approach here will be to first establish a Large Deviations Principle (LDP)

(Theorem 1) for the steady-state waiting times, and thereby obtain a computable upper bound on

the tail probability through further simplification (Theorem 2). By virtue of the generality of the

model considered here, the bounds obtained in [55] can be recovered from Theorem 2 by choosing

the state space and related probability distributions appropriately. We further use the bounds in

Theorem 2 for performance evaluation purposes of provisioning. To give a concrete example, we

also calibrate our model using a datacenter trace and devise a simplistic reactive provisioning.

Our contributions in this paper are: (1) A Markov-additive (MA) process model for a general

FJ system, and a computable upper bound on the tail probabilities of the steady-state waiting

times, obtained by means of an LDP. (2) Application of our result to three scenarios, namely,

non-renewal (Markov-modulated) arrivals, servers showing phase-type behavior, and Markov-

modulated arrivals and service. In the process, we also compare our theoretical bound against

empirical Complementary Cumulative Distribution Functions (CCDFs) obtained through Monte

Carlo simulations. (3) A formulation of (reactive and proactive) provisioning, a rule of flexible job

division, in FJ systems. (4) A numerical study based on our model using a datacenter trace, and a

corresponding example of reactive provisioning for the purpose of illustration.
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The paper, which is divided into three parts, is organized as follows: The theory part of the

paper is covered in Section 2 and Section 3, whereas the application part consists of Section 4

through Section 7. We reserve Section 8 and Section 9 for background and discussion, which also

constitute the third and the final part of the paper. Section 2 introduces the central mathematical

model and presents the main results. In Section 3, we analyze the (N , r )-FJ systems with purging

and the split-merge systems as a special case of the work-conserving (non-blocking) system. In

Section 4, we apply our result to an FJ system with non-renewal input, followed by Section 5 where

we describe an FJ system with dependent servers and introduce the notion of provisioning. The

application to FJ systems with Markov-modulated arrivals and service is discussed in Section 6.

Section 7 shows a trace-based evaluation before we discuss related work in Section 8. We conclude

the paper with a discussion in Section 9.

PART A. THEORY
2 THE MODEL
In this section, we present our mathematical model for Fork-Join systems. The roadmap is as

follows: We first establish a Large Deviations Principle for FJ systems based on a Markov-additive

process representation. Based on the LDP, we provide computable bounds on the tail probabilities

of the steady-state waiting times. The idea is to use these general results to obtain several special

cases that are relevant for practical purposes. For the purpose of illustration, we compliment our

main result with concrete application scenarios obtained as special cases in later sections.

2.1 Notational conventions
The following notational conventions are adhered to throughout the paper. We denote the set of

natural numbers and the set of real numbers by N and R respectively. Let N0 B N∪ {0}. For N ∈ N,
let [N ] B {1, 2, . . . ,N }. For F ⊆ RN , we denote the Borel σ -field of subsets of F by B(F ). For some

F ∈ B(RN ), the interior, the closure and the boundary of F are denoted by Int F ,Cl F , and Bnd F
respectively. For any extended real-valued function f , we denote the effective domain of f by D f ,
i.e., D f B {x ∈ R | f (x) < ∞}. For an event F , we denote the indicator function of F by 1(F ),
taking value unity when F is true and zero otherwise.

2.2 System description
Consider a single stage FJ queuing system with N parallel servers as depicted in Figure 1 and

Figure 2. Jobs arrive at the input station according to some process with inter-arrival time Ai
between the i-th and (i + 1)-th job, i ∈ N. A job is split into N tasks each of which is assigned

to exactly one server. The service time for the task of job i at the n-th server is denoted by the

random variable Sn,i , where n ∈ [N ] (see Figure 2). Finally the job leaves the system when all of its
tasks are served, imposing a synchronization constraint at the output. We assume the servers are

work-conserving in the sense that a server immediately starts serving the next task, if available,

upon finishing the current one.

In real applications, the behavior of the inter-arrival times and the service times may change

drastically depending on certain exogenous factors. For example, during a heavy traffic period,

the inter-arrival times are much shorter compared to those during a low traffic period. From

considerations of energy conservation or cost, the service times may also be modulated externally

to yield high or low efficiency. For instance, given a fixed monetary budget, the service rates of

a cloud computing service such as the Amazon AWS [1] could be altered as the price changes to

meet the budget constraint. For the purpose of mathematical abstraction, we use an umbrella term

“environment” for these exogenous factors. To capture the effects of changing environment, we
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Fig. 3. Graphical representation of a Markov-additive process {Ck ,Qk }k ∈N (Left) and its special “uncoupled”
case, the Markov modulated process (Right). The nodes represent the variables and the arrows, the depen-
dence structure. The process Qk is an additive component, i.e., Qk+1 = Qk + (X

A
1,k+1,X

A
2,k+1, . . . ,X

A
N ,k+1).

consider an underlying Markov chain {Ck }k ∈N0
on some measure space (E, E), where E is assumed

separable. Note that E need not be finite, or even countable. The Markov chain could capture the

changes in job arrival rates, i.e., modulate the arrival process; could decide the service rates of

the servers, i.e., modulate the service process; or both in which case it is said to modulate both

the arrival as well as the service processes. Naturally, different choices of the state space E yield
different types of modulation to suit different real-life applications. In Table 1, we present a glossary

of examples of E capturing different modulation scenarios. Detailed examples will be provided in

later sections.

2.2.1 Waiting times. In this work, we consider the waiting time as a performance metric. We

adopt the definition of waiting times from [55]. For the first job to arrive, there is no waiting time.

For subsequent jobs, we define the waiting time to be the amount of time between the arrival

of the job and the time when its last task starts getting serviced. That is, a job waits until its
last task starts being serviced from the time of its arrival. Formally, for an FJ queuing system

with N work-conserving servers, we define the waiting timeWj for the j-th job as 0 for j = 1

and max{0,maxk ∈[j−1]{maxn∈[N ]{
∑k

i=1 Sn, j−i −
∑k

i=1Aj−i }}}, for j > 1. To simplify the notations,

define the difference process Qk (sometimes called the drift process) on

(
RN ,B(RN )

)
as follows

Qk B
(
X1,k ,X2,k , . . . ,XN ,k

)
with Xn,k B

k∑
i=1

XA
n,i , (2.1)

where XA
n,i = Sn,i − Ai for all i ∈ N and set Xn,0 B 0, for each n ∈ [N ]. We are interested in the

steady-state waiting times. It can be showed that the steady-state waiting timeW has the following

distributional representation (see [55]),

W =D max

k ∈N0

max

n∈[N ]
Xn,k , (2.2)

where =D denotes equality in distribution. Despite this simple representation, getting closed-form

expression of the probability distribution ofW is hard under general settings [6, 13]. We can,

nevertheless, obtain information about its asymptotic behavior such as an LDP [22, 59] from which

we can achieve computable bounds on the tail probabilities ofW . An LDP is important in that it

quantifies probabilities of rare events (whose probabilities of occurance are exponentially small).

The rate function associated with an LDP is also unique. In the next section, we establish an LDP

for the waiting times under mild assumptions following [23, 35, 49].

2.3 Large deviations of the waiting times
We assume that the process {(Ck ,Qk )}k ∈N0

is a Markov-additive process on (E × RN , E × B(RN )).
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Modulation State space Scenario

Only arrivals

E = {0, 1} Markov-modulated high-low (or on-off)

arrivals.

E = {1, 2, . . . ,d} Finite state modulation of the arrivals.

E = N Countable state modulation of the ar-

rivals.

E = EA ⊆ R Modulation of the arrivals on an un-

countable state space such as [0, 1].

Real-life example: bursty input at

MapReduce clusters.

Only service

E = {0, 1} All servers are Markov high-low modu-

lated.

E = {1, 2, . . . ,d} All servers are Markov modulated on a

finite set.

E = {0, 1}×{0, 1}×. . .×{0, 1} All servers are Markov high-low modu-

lated, but by separate chains that may

or may not be independent.

E = {0, 1} × . . . × {0, 1} ×
{1, 2, . . . ,d}

All but theN -th server areMarkov high-

low modulated by separate chains and

the N -th server is Markov modulated

on a finite set.

E = {1} × {1} × . . . × {0, 1} Only the N -th server is Markov high-

low modulated.

E = ES
1
× ES

2
× . . . × ESN The n-th server is modulated on its own

state space ESn ⊆ R, for n ∈ [N ].

Real-life example: switching between

cloud service machines such as Ama-

zon AWS under a monetary budget con-

straint, as the prices change over time;

provisioning such as round-robbin in

MapReduce clusters.

Both arrivals and

service

E = EA × ES
1
× ES

2
× . . . × ESN The arrival process is modulated on

state space EA ⊆ R and the n-th server

is modulated on its own state space

ESn ⊆ R, for n ∈ [N ]. The modulating

chains need not be independent.

Real-life example: adaptive provisioning
(both proactive and reactive) in paral-

lel systems such as MapReduce clusters;

modulation in Multi-path Transmission

Control Protocol (Multi-path TCP).

No modulation E = {1} Reduces to the renewal case.

Table 1. Table showing different choices for the state space for different application scenarios.
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Definition 1. (Markov-additive process) The processes {(Ck ,Qk )}k ∈N is a Markov-additive

process on (E × RN , E × B(RN )) if

(1) The process {(Ck ,Qk )}k ∈N is a Markov process on (E × RN , E × B(RN )).
(2) The following holds for c ∈ E, s ∈ RN , F ∈ E,G ∈ B(RN ),

P((Ck+1,Qk+1) ∈ F × (G + s) | (C1,Q1) = (c, s))

= P((Ck+1,Qk+1) ∈ F ×G | (C1,Q1) = (c, 0))

= P((Ck+1,Qk+1) ∈ F ×G | C1 = c).

The Markov chain Ck is endowed with an additive component Qk , the difference process in our

queuing system defined in (2.1). Note that the difference process Qk is indeed additive in the sense

thatQk+1 = Qk + (X
A
1,k+1,X

A
2,k+1, . . . ,X

A
N ,k+1). Intuitively, the environment captured by the Markov

chain Ck modulates the inter-arrival and service times (through their difference) not only for the

current job but also for the next arriving job (see Figure 3). Accordingly, define the transition kernel

L(c, F ×G) B P((C1,Q1) ∈ F ×G | Q0 = c), (2.3)

where c ∈ E , F ∈ E and G ∈ B(RN ). Exponential transforms play a vital role in the study of

large deviations [22, 59]. In fact, the exponential transform of the transition kernel together with

its largest eigenvalue eventually yield an LDP [35]. Therefore, define the following exponential

transform of the transition kernel defined in (2.3), for all c ∈ E, F ∈ E, and s ∈ RN ,

L̃(c, F ; s) B

∫
RN

L(c, F × dy) exp (sy) . (2.4)

Our strategy is to first establish an LDP for {(Ck ,Qk )}k ∈N0
making use of standard results from

probability theory and then, use that to arrive at an LDP for the waiting times in the queuing

system via the contraction principle of large deviations. Therefore, we introduce the following

notation that we make use of while applying the contraction principle. For y ∈ R, define

ϒN (y) B ∪F ∈{S ⊆[N ]:S,∅}GF , (2.5)

where

GF B B1 × B2 × . . . × BN such that Bi =

{
{y} if i ∈ F ,

R \ [y,∞) if i ∈ [N ] \ F
.

The set ϒN (y) is the union of all N -fold Cartesian products of sets at least one of which is {y} and
all others are (−∞,y). For example,

ϒ2(y) = {y} × (−∞,y)
⋃
(−∞,y) × {y}

⋃
{(y,y)}.

Note that, for each y ∈ R, the set ϒN (y) is a Borel set. We need to make some additional technical

assumptions. We list them below before presenting Theorem 1.

Technical Assumptions
A1 (Recurrence) The process {Ck }k ∈N0

is an aperiodic, irreducible Markov chain with respect

to some maximal irreducibility measure and there exists a probability measure ν on (E ×
RN , E × B(RN )), an integerm, and real numbers 0 < b0 ≤ b1 < ∞ such that

b0ν (F ×G) ≤ Lm (x , F ×G) ≤ b1ν (F ×G),

where Lm (x , F ×G) B P((Cm ,Qm) ∈ F ×G | C1 = x), for each x ∈ E , F ∈ E andG ∈ B(RN ).
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A2 (Exponential transform and openness of its effective domain) Consider the exponen-
tial transform of ν ,

ν̃ (F , s) B

∫
RN

ν (F × dy) exp (sy) . (2.6)

We assume thatD B Dν̃ (E, .) is open, treating ν̃ (E, .) as a function on RN . The openness ren-
ders analyticity and essential smoothness to the logarithm of the maximal, simple eigenvalue

of the transformed kernel L̃ in (2.4).

A3 (Stability) For stability of the queuing system, we assume maxn∈[N ] E[Xn,1] < 0.

A4 (Existence of cumulants) Allowing possibly infinite values, define, for s ∈ R,n ∈ [N ],

λ(n)k (s) B k−1 log E[exp
(
sXn,k

)
],

λ(n)(s) B lim

k→∞
k−1 log E[exp

(
sXn,k

)
].

To exclude pathological cases, we assume that the effective domains of λ(n)k and λ(n) include
common open interval containing 0. This moment condition is required for the establishment

of an LDP.

Theorem 1 (Large Deviations Principle). Assume A1 (uniform recurrence), A2 (openness of the
effective domain of the exponential transform), A3 (stability of the system), and A4 (existence of
cumulants) listed above. Then, for each θ ∈ D defined in A2, the transformed kernel L̃ in (2.4) has
a maximal, real, simple eigenvalue λ(θ ). Moreover, the waiting timesWk satisfy a large deviations
principle with a good rate function J : R→ R,

lim sup

k→∞
k−1 logP(Wk ∈ B) ≤ − inf

y∈Cl B
J (y) (2.7)

lim inf

k→∞
k−1 logP(Wk ∈ B) ≥ − inf

y∈Int B
J (y), (2.8)

for all B ∈ B(R), where

J (y) B inf

x ∈ϒN (y)
Λ∗(x) , and Λ∗(x) B sup

z∈RN
{zx − log λ(z)} .

The proof of Theorem 1 follows by first establishing an LDP for {(Ck ,Qk )}k ∈N0
using [35, 49] and

then applying the contraction principle. For the sake of completeness we provide it in Appendix A.

Once an LDP for {(Ck ,Qk )}k ∈N0
has been established, the idea is to treat the waiting times in

the FJ system as a continuous mapping of the Markovian sample paths {(Ck ,Qk )}k ∈N0
. Hence,

the use of the contraction principle. The contraction principle is crucial because it captures the

FJ-inherent synchronization constraint. Theorem 1 provides estimates of probabilities of rare events

such as the waiting times making large deviations from its mean value. In particular, for events

B that are P-continuous (i.e., P(BndB) = 0), as many events of practical interest are, we can

straightforwardly approximate their probabilities by the precise exponential estimates of the form

exp

(
−k infy∈B J (y)

)
. Moreover, the rate function J is unique and therefore, uniquely characterizes

the asymptotic behavior of the waiting times [22, 28, 59]. Remarkable that it is possible to estimate

probabilities of rare events under mild technical conditions A1, A2, A3 and A4. For practical
purposes, however, the computation of the rate function J involves the joint distribution of Qk ,

which, in turn, involves the joint distribution of the inter-arrival times and the service times at

different servers. This computation may not be easy to perform for arbitrary choices of probability

distributions of the inter-arrival times and the services times. Therefore, in the next section, we

make a few simplifying assumptions for the sake of computability, and provide a computable
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upper bound on the tail probabilities of the steady-state waiting times. The bound is derived as a

by-product of the large deviations result.

2.4 Simplifications for computability: Probabilistic bounds on waiting times
In addition to A1, A2, A3 and A4, we assume that conditional on {Ck = c}, the servers act

independently. This entails that the processes {(Ck ,Xn,k )}k ∈N, for each n ∈ [N ] are Markov-

additive processes on (E × R, E × B(R)). Their transition kernels are defined as,

Kn(c, F ×G) B P((C1,Xn,1) ∈ F ×G | C0 = c), (2.9)

for n ∈ [N ], where c ∈ E , F ∈ E and G ∈ B(R). Note the difference to (2.3). Also, define the

corresponding exponential transforms

K̃n(c, F ; s) B

∫
R
Kn(c, F × dx) exp (sx) , ∀n ∈ [N ]. (2.10)

We construct martingales using the largest eigenvalues of the transformed kernels, and then apply

the celebrated Doob’s martingale inequality on each of Xn,k for n ∈ [N ]. This step essentially yields
bounds on server-specific waiting times. Coupled with the assumption of conditional independence

of the servers, we obtain an upper bound on the tail probability of the steady-state waiting time of

the entire queueing system. These ideas are made precise in the proof of the following theorem

providing upper bound on the tail probability of the steady-state waiting times in a Fork-Join

system with N heterogeneous work-conserving servers.

Theorem 2 (Upper bound on the tail probabilities of the steady-state waiting time). Consider an
FJ system with N parallel work-conserving servers, as described in Section 2.2. Then, we have
(1) For all n ∈ [N ] and s ∈ Dλ(n), exp

(
λ(n)(s)

)
is the simple maximal eigenvalue of K̃n , and the

corresponding right eigenfunction {rn(c, s); c ∈ E} satisfying

exp

(
λ(n)(s)

)
rn(c, s) =

∫
R
K̃n(c, dτ ; s)rn(τ , s),

is positive and bounded above.
(2) The tail probabilities of the steady-state waiting times defined in (2.2) are bounded above by

P(W ≥ w) ≤
∑
n∈[N ]

ϕn(θn) exp (−θnw) , (2.11)

where θn B sup{s > 0 | λ(n)(s) ≤ 0} and ϕn(s) B ess sup{1(Xn,1 > 0)/rn(C1, s)}, after
having normalized rn(.,θn) so that E[rn(C0,θn)] = 1, for each n ∈ [N ].

Note that the existence of the simple maximal eigenvalue is guaranteed by [30, Chapter III,

Theorem 10.1]. The proof of Theorem 2 follows by extending results for Markov-additive processes

from probability literature (see, e.g., [35, Lemma 3.1 and 3.2] and also [23]). However, for the sake

of completeness, it is provided in Appendix B. Essentially, we first manufacture server-specific

martingales exploiting the exponential transforms K̃n . Themartingales capture the average behavior

ofXn,k for each n ∈ [N ] as a stochastic process in k . The normalization of the right eigenfunction rn
is done to ensure the martingales have mean unity. Finally, the upper bound on the tail probability

of the steady-state waiting time is obtained by combining the server-specific martingales and

applying Doob’s maximal inequality. Theorem 2 is central to all the application scenarios that

we consider in this paper. The quantity θn is called the decay rate of the n-th server, and the

quantity
˜θ B minn∈[N ] θn is defined to be the decay rate of the system. The latter definition is

motivated from the principle of largest exponent in large deviations theory [22, Lemma 1.2.15],

which roughly states that, on an exponential scale, the effective rate of a sum of finitely many
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Fig. 4. (Left) The modulating Markov chain Ck in Example 1 has state space E = {1, 2}. The arrows depict
possible transitions between the states of the Markov chain. The numbers ti, j ’s are the corresponding
transition probabilities. (Right) The largest eigenvalue or the Perron root of the transformed matrices in
(2.12) as a function of s , the free parameter of the eigenvalues. The server-specific decay rates θ1 and θ2 are
found by checking where the Perron root crosses the horizontal straight line corresponding to unity.

sequences is governed by the maximum of them. This supports the intuition that the system is

constrained by the weakest (slowest) of the servers. The quantities ϕn ’s are called prefactors. Since

the decay rate captures all information about the performance of the system, the prefactors here

have not been optimized and are conservatively chosen.

The bound provided in Theorem 2 is computable. An interesting observation is that, given the

transition kernel T of the Markov chain Ck alone, one can view the transformation defined in

(2.10) as a transformation of T also. This point of view is useful for computational purposes. In the

following, we provide two illustrations.

Example 1 (Correlated exponential inter-arrival and service times). Suppose there are two hetero-
geneous servers labeled 1 and 2. We are interested in modeling two different environments, i.e., we
set E = {1, 2} (see Figure 4). In keeping with Figure 3, we assume the inter-arrival times and the

services times at the n-th server are exponentially distributed with rates λi, j and µ(n)i, j respectively,

when the underlying Markov chain Ck transitions from state i to state j, for i, j,n = 1, 2. The λ’s
and the µ’s are taken to be strictly positive to avoid trivialities. Assume the inter-arrival times

and the service times are independent, conditional on the Markov chain. Let T B ((ti, j ))i, j=1,2
denote the transition probability matrix of Ck . Then, for n = 1, 2, the random variable Xn,1 is a

difference of two exponential random variables, and therefore, Kn(ci , {c j } ×B) = ti, j
∫
B fn(i, j;y) dy

(see Figure 3), where

fn(i, j;y) B


(

1

µ (n)i, j
+ 1

λi, j

)−1
exp

(
λi, jy

)
if y ≤ 0,(

1

µ (n)i, j
+ 1

λi, j

)−1
exp

(
−µ(n)i, j y

)
if y > 0.

The transformed kernel is the conditional Moment Generating Function (MGF) of the random

variable Xn,1. Simple calculation yields the exponentially transformed kernels K̃n(ci , {c j }; s) =

ti, j

(
µ (n)i, j

µ (n)i, j −s

) (
λi, j

λi, j+s

)
. The decay rates θn ’s are then obtained by computing the largest eigenvalues
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of the transformed transition matrices

T =

(
t1,1 t1,2

t2,1 t2,2

)
7−→

©­­­«
t1,1

(
µ (n)
1,1

µ (n)
1,1 −s

) (
λ1,1

λ1,1+s

)
t1,2

(
µ (n)
1,2

µ (n)
1,2 −s

) (
λ1,2

λ1,2+s

)
t2,1

(
µ (n)
2,1

µ (n)
2,1 −s

) (
λ2,1

λ2,1+s

)
t2,2

(
µ (n)
2,2

µ (n)
2,2 −s

) (
λ2,2

λ2,2+s

)ª®®®¬ for n = 1, 2. (2.12)

In Figure 4, we plot θ1 and θ2 as functions of s and show how the decay rates are obtained. Let

r1 and r2 denote the corresponding right eigenvectors after having carried out the normalization

to get E[r1(C0,θ1)] = 1, and E[r2(C0,θ2)] = 1. Denoting the initial distribution of the chain Ck by

π = (π1,π2), the normalization amounts to setting r1(1,θ1)π1 + r1(2,θ1)π2 = 1 and r2(1,θ2)π1 +
r2(2,θ2)π2 = 1. Because of the exponential assumption, the prefactors are given by ϕ1(θ1) =
max(1/r1(1,θ1), 1/r1(2,θ1)), and ϕ2(θ2) = max(1/r2(1,θ2), 1/r2(2,θ2)). Finally, following (2.11), we

arrive at the bound P(W ≥ w) ≤ ϕ1(θ1) exp (−θ1w) + ϕ2(θ2) exp (−θ2w).
Parameters chosen in Figure 4 are as follows (shown up to four decimal points):

Parameter Value

T

(
0.6307 0.3693

0.7668 0.2332

)
π (0.0772, 0.9228)

(λ1,1, λ1,2, λ2,1, λ2,2) (0.8842, 0.8784, 0.8930, 0.8338)

(µ(1)
1,1, µ

(1)

1,2, µ
(1)

2,1, µ
(1)

2,2) (1.0782, 1.0635, 1.1632, 1.1629)

(µ(2)
1,1, µ

(2)

1,2, µ
(2)

2,1, µ
(2)

2,2) (1.1578, 1.1011, 1.1705, 1.1271)

All parameters are chosen randomly satisfying the technical assumptions A1, A2, A3, and A4.
In this example, the first server is weaker than the second. Therefore, θ1 (= 0.2192) is smaller than

θ2 (= 0.2628). Having obtained (ϕ1,ϕ2) = (1.0014, 1.0005), the bound is given by P(W ≥ w) ≤
1.0014 exp (−0.2192w) + 1.0005 exp (−0.2628w). ■

Example 2 (Modulation on an uncountable state space E). Similar to Example 1, let us assume there

are two heterogenous servers labeled 1 and 2. However, in contrast to Example 1, we assume the

Markov chain has an uncountable state space, e.g., an interval [a,b]. Conforming to the dependence

structure dictated by the graphical model shown in Figure 3, we assume the inter-arrival times

and the services times at the n-th server are exponentially distributed with strictly positive rate

functions λ(x ,y) and µ(n)(x ,y) respectively, when the underlying Markov chainCk transitions from

state x to state y, for n = 1, 2 and x ,y ∈ [a,b]. For simplicity, we also assume the inter-arrival times

and the service times are independent, conditional on the Markov chain. The transition kernel of

Ck is denoted byT , as before. The choices of the rate functions λ and µ(n), and the transition kernel

T depend on the specific application scenario. For instance, if the environment in question does

not vary drastically for two consecutive incoming jobs, we may choose a Gaussian kernel with a

small variance or a Laplace kernel with a small scale parameter, both restricted to [a,b]. We can

control how rapidly the environment changes via the variance parameter of the Gaussian kernel or

the scale parameter of the Laplace kernel. In this example, let us take T to be the Laplace kernel

with scale parameter σ . Then, doing similar calculation as in Example 1, we get

K̃n(x , F ; s) =
1

u(x)

∫
F
exp

(
−
|y − x |

σ

) (
µ(n)(x ,y)

µ(n)(x ,y) − s

) (
λ(x ,y)

λ(x ,y) + s

)
dy,
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where u(x) =
∫ b
a exp

(
−
|y−x |
σ

)
dy, and x ∈ [a,b]. Given the choices of the rate functions λ and µ(n),

we find the maximal eigenvalue and the corresponding right eigenfunction of K̃n to obtain the

bound given in (2.11). The eigenvalue and the right eigenfunction are usually found as a solution

to the integral equation mentioned in Theorem 2. Note that finding closed-form expressions may

be infeasible for arbitrary choices of the rate functions λ and µ(n). In such a situation, we resort to

numerical methods [3, 54]. A standard approach is to approximate the integral using samples [8].

For the sake of simplicity, let us assume that the environment only modulates the arrival process.

In particular, when the Markov chain is in state x , the inter-arrival times are assumed to be

exponentially distributed with rate x , i.e., λ(x ,y) = x . The task of finding the maximal eigenvalue of

the transformed kernel K̃n is equivalent to solving the following integral equation for λ(n), and rn ,∫ b

a
exp

(
−
|x − y |

σ

)
rn(x , s) dx = Un(y, s) exp

(
λ(n)(s)

)
rn(y, s),

where the conditional MGF accounting for the service process as well as the constants have been

absorbed into the functionUn(y, s) =
(
1 + s

y

) (
1 − s

µ (n)

)
u(y). To solve the above integral equation,

we differentiate it twice with respect to y to obtain the following differential equation,

r ′′n (y, s) + 2
U ′n(y, s)

Un(y, s)
r ′n(y, s) +

(
U ′′n (y, s)

Un(y, s)
−

1

σ 2

(
1 −

2σ exp

(
−λ(n)(s)

)
Un(y, s)

))
rn(y, s) = 0. (2.13)

The derivation of (2.13) is provided in Appendix B. The nonlinear differential equation (2.13) can

then be solved numerically. After doing necessary normalization to get E[rn(C0,θn)] = 1, for

n = 1, 2, we obtain the bound using Theorem 2. ■

For ease of computation, in the following we shall consider what is referred to as the “uncoupled”

MA process in [35]. This essentially refers to a process with Markov-modulated increments (see

Figure 3 and refer to [23]). This is an important class from a practical perspective, specially in the

light of recent empirical evidences of burstiness in clusters running MapReduce [19, 33, 39, 61].

2.5 The “uncoupled” case
Suppose the distributions of increments, XA

n,k+1, for each n ∈ [N ], do not depend onCk , conditional

on Ck+1 (see Figure 3). This allows us to find conditional distributions Qn(c,B) B P(XA
n,1 ∈ B |

C1 = c), for each n ∈ [N ] and for each c ∈ E and B ∈ B(R). Then, the transformed kernels in (2.10)

simplify as follows

K̃n(c, dτ ; s) =T (c, dτ )

∫
R
Qn(τ , dz) exp (sz) = T (c, dτ )Eτ

(
exp

(
sXA

n,1

))
.

Here we use the shorthand notation Eτ
(
exp

(
sXA

n,1

))
to denote E[exp

(
sXA

n,1

)
| C1 = τ ], the moment

generating function of XA
n,1 conditioned on {C1 = τ }, the event that underlying Markov chain

is in state τ ∈ E for the first arrival. We can further simplify the formulas if we make following

assumptions
1
.

U1 We assume that the service times and the arrival times are independent, conditioned on

{Ck = c}. This yields

K̃n(c, dτ ; s) = T (c, dτ )Eτ
(
exp

(
sSn,1

) )
Eτ (exp (−sA1)) . (2.14)

1
These assumptions are only for the sake of simplification of computation, and are not necessary for the bounds of the

general case.
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U2 Further, if the increments XA
n,1 take positive values with non-zero probability for any condi-

tioning of Ck , then the essential supremums in Theorem 2 simplify to

ϕn(s) = sup

c ∈E
{1/rn(c, s)}. (2.15)

With these simplifications the computation of the bound on the tail probabilities of the waiting

times is easier. We present the procedure in the form of pseudocode 1 for ease of understanding and

implementation. Note that pseudocode 1 requires numerical solution methods when closed-form

analytic expressions are difficult to obtain.

ALGORITHM 1: Pseudocode for work-conserving systems

Input :Transition kernel T , and the MGFs Eτ
(
exp

(
sSn,1

) )
, Eτ (exp (−sA1))

Output :The decay rates θn and the prefactors ϕn

if A1 and A2 and A3 and A4 then
for n ∈ [N ] do

Transform T to get K̃n(c, dτ ; s) (see (2.14));

exp

(
λ(n)(s)

)
← maximal eigenvalue of K̃n(c, dτ ; s);

θn ← sup{s > 0 | λ(n)(s) ≤ 0};

Normalize rn(.,θn) so that E[rn(C0,θn)] = 1;

ϕn(θn) ← supc ∈E{1/rn(c,θn)};

end
end

2.6 Renewal Processes as a special case
Several previously known results on FJ systems where a renewal arrival process was assumed (e.g.,
the renewal cases in [42, 55]) can be retrieved by simply setting E = {1}. In this case, following

Algorithm 1, the bounds turn out to be

P(W ≥ w) ≤
∑
n∈[N ]

exp (−θnw) , (2.16)

where

θn = sup{s > 0 | E[exp
(
sSn,1

)
]E[exp (−sA1)] ≤ 1}.

The technique used in [42, 55] to prove inequalities like (2.16) is also based on a martingale

construction and an application of the Doob’s inequality. In fact, their construction can be seen as

a special case of the martingale in (A.2) for general MA processes. However, it should be noted that

it does not immediately generalize to an LDP for our MA process setting without careful handling

of additional technicalities.

Remark 1. The bound in (2.11) can also be used to derive an upper bound on the mean waiting

time for the work-conserving system as follows

E[W ] ≤
∑
n∈[N ]

ϕn(θn)

θn
. (2.17)

So far we have considered only work-conserving servers. However, there are situations when the

assumption of work-conservingness is not tenable. In particular, there are many real-life application

scenarios where the servers are so called “blocking” in nature. Such a server waits for (some of
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the) other servers to finish servicing the tasks of the current job before taking up the next job. This

entails forced idleness resulting in higher waiting times. In the next section, we show that our

framework is applicable to (partially) blocking systems as well.

3 PURGING (N , r )-FJ SYSTEMS AS HYPOTHETICAL SINGLE-SERVER QUEUES
Redundancy techniques have become increasingly popular over the last few years as a tool to

decrease latency. Such techniques typically create redundant tasks for each job with the hope of

achieving smaller response times as the creation of redundant jobs mitigates the synchronization

constraint at the output (see Figure 2) either entirely (in case of full replication) or partially (in case

of partial replication, e.g., (n,k) Fork-Join in [38]). In this section, we show that our Markov-additive

framework for a general FJ system developed in Section 2 can be applied to study a purging (N , r )
replication strategy in an FJ system.

An (N , r )-replication strategy with purging assigns tasks of each incoming job to each of the N
available servers (one task per server). The tasks are created in such a way that a job leaves the

system as soon as any r ∈ [N ] of its N tasks are executed (see [38]). Therefore, there is only a partial

synchronization constraint at the output (there is no synchronization if r = 1). Purging enforces

that as soon as the first r servers execute their tasks, all other servers immediately discontinue

their tasks at that time and take up the task of the next job. In that sense, the servers are partially

blocking. Only the first r − 1 servers that complete the tasks of a given job assigned to them wait

until one more server completes its task of the current job (at which point r tasks of the current
job are completed) and then take up the task of the next job

2
. An (N , r )-FJ system with a purging

replication strategy can be viewed as a hypothetical work-conserving system with a single server

whose service times are now distributed as S̃i =D ιr {Sn,i | n ∈ [N ]}. The symbol ιr denotes the
r -th order statistic. Therefore, the steady-state waiting time has the following representation

W̃ =D max

k ∈N0

Zk with Zk B
k∑
i=1

ZA
i , (3.1)

where ZA
i B ιr {Sn,i | n ∈ [N ]} −Ai for all i ∈ N and set Z0 B 0. Also define

ρk (s) B k−1 log E[exp (sZk )], and ρ(s) B lim

k→∞
k−1 log E[exp (sZk )].

The upper bound on the tail probabilities of the steady-state waiting times can then be derived

directly from Theorem 2. Therefore, we have the following corollary to Theorem 2. The transformed

kernel L̃ is calculated using (2.4).

Corollary 1 (Replication with purging). Consider an (N , r )-FJ system governed by a purging repli-
cation strategy. Then, we have
(1) For all s ∈ Dρ, exp (ρ(s)) is the simple maximal eigenvalue of L̃ and the corresponding right

eigenfunction {r̃ (c, s); c ∈ E} satisfying

exp (ρ(s)) r̃ (c, s) =

∫
R
L̃(c, dτ ; s)r̃ (τ , s),

is positive and bounded above.
2
The case when the servers do not wait at all is not directly reducible to a hypothetical single-server system without

modifying the definition of the waiting time in Section 2.2.1 unless r = 1. We do not analyse such systems in this paper.

Nevertheless, one can argue that the waiting times in those work-conserving (N , r ) systems are expected to be stochastically

dominated by the waiting times in our (N , r )-system with purging. Therefore, at least intuitively, the upper bounds on the

tail probabilities of the steady-state waiting times in our system can also be taken as upper bounds on the corresponding tail

probabilities of the steady-state waiting times in a work-conserving (N , r )-system. However, the decay rate in our bound

will not be optimal for those systems.
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(2) The tail probabilities of the steady-state waiting times are bounded above by

P(W̃ ≥ w) ≤ ϕ(θ ) exp (−θw) , (3.2)

where θ B sup{s > 0 | ρ(s) ≤ 0} and ϕ(s) B ess sup{1(Z1 > 0)/r̃ (C1, s)} after having
normalized r (.,θ ) so that E[r̃ (C0,θ )] = 1.

We provide illustrative examples for different choices of distributions in the following.

Example 3 (Arbitrary r ∈ [N ], Irwin-Hall inter-arrival times, arbitrary service distributions). Let

E be finite. Suppose at state j of the Markov chain {Ck }k ∈N0
, the inter-arrival times are Irwin-Hall

distributed with parameter λj ∈ N0 and MGF (
exp(s)
s − 1)λj , and the service times at the n-th server

are distributed according to an absolutely continuous Cumulative Distribution Function (CDF)

Fn, j . That is, both the inter-arrival times and the service times are modulated. We assume the

service times are independent conditionally on {Ci = j}. Write F (j) B (F1, j , F2, j , . . . , FN , j )
T
and

1 − F (j) B (1 − F1, j , 1 − F2, j , . . . , 1 − FN , j )
T
. Then, the distribution of the r -th order statistic

S̃i B ιr {Sn,i | n ∈ [N ]} for the i-th job, conditionally on {Ci = j}, can be written in terms of the

permanents of a matrix (see [10, Theorem 4.1]; also [11, 41] for applications)

P(S̃i ≤ s | Ci = j) =
N∑
l=r

1

l !(N − l)!
per

[ F (j)(s)
l

1 − F (j)(s)

N − l

]
,

where

[
F (j )(s)

l
1−F (j )(s)
N−l

]
is the matrix whose first l columns are F (j) and the last N − l columns

are 1 − F (j), evaluated at s . The permanent of an N × N real matrix B = ((bi, j ))i, j ∈[N ] is defined as

per B B
∑

σ ∈Sym([N ])

N∏
i=1

bi,σ (i) ,

where Sym ([N ]) denotes the class of all permutations of [N ]. Then, the MGF of r -th order statistic

S̃i conditionally on the Markov chain being in state j, i.e., {Ci = j}, is given by the mr [] operators

acting on F (j) as follows

E[exp
(
sS̃i

)
| Ci = j] = mr

[
F (j)

]
(s) B

N∑
k=N−r+1

(−1)k−(N−r−1)
(
k − 1

N − r

)
Mk

[
F (j)

]
(s) , (3.3)

for s > 0, where the Mk []-operators, for k ∈ [N ], acting on the space of N -dimensional functions

each component of which is a valid CDF are defined as

Mk

[
F (j)

]
(s) B

∑
G ∈{A⊆[N ]: |A |=k }

∫ ∞

0

(∏
i ∈G

(
1 − Fi, j (

1

s
lnx)

))
dx . (3.4)

The summation runs over all subsets of [N ] with cardinality k . See [41] for elaborate calculations
involving order statistics. The required transformation of the transition matrix is given by

ti j → ti j

(
1 − exp (−s)

s

)λj
mr

[
F (j)

]
(s) .

Denote the largest eigenvalue of the transformed matrix by χ (N ,r )
AS . The decay rate is found as

θ = sup{s > 0 | χ (N ,r )
AS (s) ≤ 1}. (3.5)

After normalization of the right eigenvector, we compute the bounds on the tail probabilities of the

steady-state waiting times using formulas in (3.2). ■
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Example 4 (r = 1, hyperexponential service times). Suppose the arrival process is renewal,

i.e., E = {1}. Then, instead of solving an eigenvalue problem to find the decay rate, we solve a

nonlinear equation involving the MGF and the Laplace transform of the service times and the

inter-arrival times. We follow an (N , 1)-replication strategy with purging to maximize the benefit

of replication (i.e., to minimize the output synchronization constraint). Suppose the service times

of the n-th server are independently hyperexponentially distributed with rates µn,1, µn,2, . . . , µn,kn
and mixing probabilities pn,1,pn,2 . . . ,pn,kn , for some kn ∈ N0 and n ∈ [N ]. Also assume the inter-

arrival times are exponentially distributed with rate λ. Since the minimum of a finite collection

of hyperexponential random variables is itself hyperexponentially distributed (see Remark 2 in

Appendix C), the decay rate θ in Corollary 1 is found by solving the following equation

©­«
∑

π ∈[k1]×[k2]×···×[kN ]

∏
n∈[N ]

pn,πn

( ∑
n∈[N ] µn,πn∑

n∈[N ] µn,πn − θ

)ª®¬
(

λ

λ + θ

)
= 1.

The upper bound on the tail probabilities is then found by plugging in the solution θ in (3.2). ■

3.1 Split-merge systems
Split-merge [48] or blocking systems arise naturally in several real-life applications, for instance,

when the dispatcher and the task collector in Figure 2 are one and the same unit that assigns new

jobs only after the current job is executed. In a parallel computation scenario, the master node,

upon arrival of a computation request, may assign intermediate tasks to a number of slave nodes,

then wait for all the slave nodes to hand over their intermediate results back to the master node for

further aggregation before assigning new computation tasks to the slave nodes. Blocking systems

also arise when there needs to be a consensus among the servers regarding the job division before

its tasks can be executed.

Example 5 (r = N , blocking system). Let E be finite. Suppose at state j of the Markov chain

{Ck }k ∈N0
, the inter-arrival times are exponentially distributed with parameter λj and accordingly,

the service times at the n-th server are distributed exponentially with parameter µn, j . Define

µ(j) B (µ1, j , µ2, j , . . . , µn, j ). Then, the required transformation for the blocking system is given

by ti j → ti jβ(µ
(j)
; s)

(
λj

λj+s

)
, where β is the MGF of the maximum of N exponentially distributed

random variables and is given by (see Remark 3 in Appendix C)

β(µ; s) B
∑

G ∈{A⊂[N ] |A,∅}

(−1) |G |+1
(
∑

i ∈G µi )

(
∑

i ∈G µi ) − s
. (3.6)

Denote the largest eigenvalue of the transformed matrix by χbAS . The decay rate is found as

θ = sup{s > 0 | χbAS (s) ≤ 1}. (3.7)

After normalization of the right eigenvector, we compute the bounds on the tail probabilities of the

steady-state waiting times using formulas in (3.2). ■

The equivalence between a blocking system and a system with one work-conserving server has

been shown before (see [36, 37, 48]). While the previous works provide bounds on themean response

time, we provide upper bound on the tail probabilities of the steady-state waiting times under a

more general set-up. In particular, we allow for changing environments via the Markov-additive

process formulation and a broad class of inter-arrival and service time distributions.

Next, in Part B of the paper, we shall apply of our results to different Markovmodulation scenarios

and provide numerical examples.
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Fig. 5. Comparison of the theoretical bound
with Monte Carlo box plots obtained from 10

3

independent simulation runs each with 10
6

jobs. We consider an FJ system with five work-
conserving servers. The inter-arrival times are
Markov modulated with E = {1, 2, 3}. The
inter-arrival times are Gamma distributed
with randomly chosen parameters.
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PART B. APPLICATIONS
4 FJ SYSTEMWITH NON-RENEWAL INPUT
In this section, we describe an FJ system with Markov-modulated inputs. This is principally

motivated by recent empirical evidences that reveal burstiness in Internet traffic and also in inputs

to MapReduce clusters [19, 33, 39, 61]. In general, to model burstiness, we can assume the inter-

arrival times to be modulated by some Markov chain {Ck }k ∈N0
.

Example 6 (Numerical example: MM inter-arrival times). Suppose the modulating Markov chain

takes three distinct values (corresponding to different phases of arrival traffic). In state j of the
chain, suppose the inter-arrival times are Gamma distributed with parameters λj and kj . Also
assume, the service times at the n-th server are exponentially distributed with parameter µn . Then,
the transformation in (2.14) is simply

©­­«
t1,1 t1,2 t1,3

t2,1 t2,2 t2,3

t3,1 t3,2 t3,3

ª®®¬ 7−→
©­­­«
t1,1(

λ1
λ1+s
)k1 t1,2(

λ2
λ2+s
)k2 t1,3(

λ3
λ3+s
)k3

t2,1(
λ1

λ1+s
)k1 t2,2(

λ2
λ2+s
)k2 t2,3(

λ3
λ3+s
)k3

t3,1(
λ1

λ1+s
)k1 t3,2(

λ2
λ2+s
)k2 t3,3(

λ3
λ3+s
)k3

ª®®®¬ .
Having done the above transformation, the decay rates are found as

θn = sup{s > 0 |
µn

µn − s
χA(s) ≤ 1}, (4.1)

where χA is the largest eigenvalue of the transformed matrix. After normalization of the right

eigenvector, one obtains the bounds using (2.11). Please see Figure 5 to compare our bounds with

empirical CCDFs obtained from Monte Carlo simulations. In addition to the empirical estimates,

we also show box plots. As the tail probabilities decrease, the Monte Carlo estimates are based on

fewer samples. Therefore, higher variance is observed for smaller tail probabilities. ■

5 PARALLEL SYSTEMSWITH DEPENDENT SERVERS
In this section, we consider an FJ system as described in Section 2 with correlated servers. To be

precise, we assume that the service times are modulated by a Markov chain. The motivation behind

this is the phase type behavior that service times show due to various exogenous effects. Before

furnishing numerical examples, we mention some factors that might engender such a phase-type

behavior.
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Fig. 6. Single-node FJ system with a provisioning where the heavier part of each incoming job is apportioned
in a round robin fashion. Let Jobi = (Jobi,1, Jobi,2), where Jobi,1 denotes the heavier sub-job. For instance,
for the first job Job

1
, the sub-job Job

1,1 is allotted to servers 1, 2, . . . ,d and Job
1,2, to the rest. Then, Job

2,1 is
allotted to servers d + 1,d + 2, . . . , 2d and Job

2,2 to the rest, and so on.

Unequal job sizes. Phase-type behavior may arise when the sizes of the incoming jobs are unequal

enforcing a change of service time distribution across the servers. Intuitively, heavier jobs demand

greater service times in total. This can be modeled by scaling up the service times or the parameters

of their distributions whenever a heavier job arrives. For instance, in the context of MapReduce,

the job sizes can be time varying. In the context of Multi-path TCP, the packet sizes are usually of

different sizes. The modulating chain captures the different job sizes enforcing different service time

distributions. The state space of the chain E can be chosen depending on the particular application

under consideration.

Provisioning in MapReduce. The “irregular” service times may also arise due to provisioning,

even when the job sizes are constant. Suppose that the incoming jobs are split unequally among

the available servers. The rule that decides job division into tasks is termed provisioning. Such
provisioning can be employed in MapReduce systems to influence waiting times. Consider the

following example: Each job consists of two sub-jobs one of which is more demanding than

the other. That is, Jobi = (Jobi,1, Jobi,2), where Jobi,1 can be assumed to be heavier (more time-

consuming) without loss of generality. Now, in order to apportion the burden of the heavier job,

devise a variant of the round robin mechanism such that for the first job Job
1
, the sub-job Job

1,1

is allotted to servers 1, 2, . . . ,d and Job
1,2, to the rest N − d servers. Then, Job

2,1 is allotted to

servers d + 1,d + 2, . . . , 2d and Job
2,2 to the rest, and so on. Mathematically this is equivalent to

having a modulating Markov chain that starts at state 1 where it assigns service time distributions

appropriate of the heavier job (e.g., scaled service times as explained before) to servers 1, 2, . . . ,d and

the usual unscaled service time distribution, to the rest, and then jumpswith probability one to state 2

where it assigns service time distributions appropriate of the heavier job to serversd+1,d+2, . . . , 2d
and the usual, to the rest. See Figure 6 for a pictorial description of this provisioning.

Modulation in MPTCP. Packet scheduling or load-balancing mechanisms, e.g., [27], could also

give rise to correlated service times. The load-balancing algorithm typically decides on the amount

of packets to send over each path with the objective of keeping congestion under control. Taking the
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liberty of mathematical abstraction, we canmodel such a scenario with aMarkov chain (representing

the decisions of the load-balancer) that modulates only the service times of the system.

Efficiency differentiation. Servers may themselves have their own high and low efficiency periods

that may or may not depend on the state of the other servers, e.g., enforced by energy-saving

routines [56]. The service rates may also be modulated by the user. For instance, given a fixed

monetary budget, the user of a cloud computing service such as the Amazon AWS may be forced

to switch to a less expensive machine (with inferior service rates) when the price of the current

machines increase, to meet the budget constraint (e.g., see [57]).

Example 7 (Numerical example: Markov-modulated service times). Motivated by the above

scenarios, we now elaborate the bound computation in (2.11). In this example, assume the arrival

process is renewal and inter-arrival times are Gamma distributed with rate λ and shape l .
Suppose there are two servers each of which has two efficiency phases, high and low. We model

this by two Markov chains modulating the servers, each on state space {0, 1}. For the sake of

simplicity, assume that server i is shifted exponentially distributed with rate µi and shift ai or
rate κi and shift bi according as its modulating Markov chain is state 0 or 1. The two Markov chains

may not be independent. Mathematically this is equivalent to having one single modulating Markov

chain on state space {0, 1} × {0, 1}. Since the set {0, 1} × {0, 1} has one-to-one correspondence
with the set {1, 2, 3, 4}, we can conveniently rename the states as (0, 0) 7→ 1, (0, 1) 7→ 2, (1, 0) 7→
3, (1, 1) 7→ 4. For the 1st server, following (2.14), we transform

©­­­­­«
t1,1 t1,2 t1,3 t1,4

t2,1 t2,2 t2,3 t2,4

t3,1 t3,2 t3,3 t3,4

t4,1 t4,2 t4,3 t4,4

ª®®®®®¬
7−→

©­­­­­­«
t1,1e

a1s µ1
µ1−s

t1,2e
a1s µ1

µ1−s
t1,3e

b1s κ1
κ1−s

t14e
b1s κ1

κ1−s

t2,1e
a1s µ1

µ1−s
t2,2e

a1s µ1
µ1−s

t2,3e
b1s κ1

κ1−s
t24e

b1s κ1
κ1−s

t3,1e
a1s µ1

µ1−s
t3,2e

a1s µ1
µ1−s

t3,3e
b1s κ1

κ1−s
t34e

b1s κ1
κ1−s

t4,1e
a1s µ1

µ1−s
t4,2e

a1s µ1
µ1−s

t4,3e
b1s κ1

κ1−s
t44e

b1s κ1
κ1−s

ª®®®®®®¬
.

Transformation for the 2nd server is analogous. Denote the largest eigenvalues of these two

transformed matrices by χ (1)S and χ (2)S respectively. Having done the above transformation, the

decay rates are found as

θn = sup{s > 0 |

(
λ

λ + s

) l
χ (n)S (s) ≤ 1}. (5.1)

After normalization of the right eigenvectors, one finds the bounds on the tail probabilities of the

steady-state waiting times using formula in (2.11). To see the quality of our bounds on a bigger

state space, we simulated an FJ system with five heterogeneous servers being modulated by a chain

having 32 states. See Figure 7 to compare our bounds against empirical CCDFs. ■

6 MARKOV MODULATED ARRIVALS AND SERVICE
In this section, we describe a system where service and inter-arrival times may be dependent. This

is essentially a generalization of Sections 4 and 5. All the motivating examples listed in Sections 4

and 5 can be extended to this case to account for generalized application scenarios. While this

allows us to endow service times of each server, and the arrival process, separate modulating

Markov chains (which can be modeled by one single chain on the Cartesian product space as shown

before), we can use this formalism to devise more advanced provisioning by taking into account

the current job arrival rate (i.e., set efficiency of servers to “high” during busy period and to “low”

otherwise etc.). This paves way for what we call “reactive provisioning.”
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Fig. 7. Comparison of the theoretical bound
with Monte Carlo box plots obtained from 10

3

independent simulation runs each with 10
6

jobs. We consider an FJ system with five work-
conserving servers. The inter-arrival times are
Gamma distributed. The service times are
distributed according to shifted exponential
distributions, the parameters of which are
Markov modulated. The modulating Markov
chain takes values in the set E = {1, 2, . . . , 32}.
All the parameters randomly chosen.
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6.1 Reactive provisioning
We propose to take into account information on the current FJ system environment, e.g., estimates

of the arrival intensities, and then modulate, i.e., set service rates accordingly. Such a provisioning is

reactive in nature and hence the nomenclature. The changing environment is essentially captured

through the modulating Markov chain for the arrivals in this case.

Example 8 (Numerical example: MM inter-arrival and service times). Consider a Markov chain

{Ck }k ∈N0
capturing the changing environment in the sense that at state j of the Markov chain,

the inter-arrival times are Gamma distributed with rate λj and shape lj , and accordingly, the

service times at the n-th server are distributed according to a shifted exponential distribution

with rate µn, j and shift an, j . Then, the required transformation for work-conserving systems is

ti j → ti j exp
(
an, js

) (
µn, j

µn, j−s

) (
λj

λj+s

) lj
, for the n-th server. Let us denote the largest eigenvalue of

the transformed matrix for the n-th server by χ (n)AS . Therefore, the decay rates are found as

θn = sup{s > 0 | χ (n)AS (s) ≤ 1}. (6.1)

After normalization of the right eigenvectors, we compute the bounds on the tail probabilities of

the steady-state waiting times using the formula in (2.11). To see the quality of our bounds, we

simulated the system with the modulating chain having 64 states. See Figure 8 to compare our

bounds against empirical CCDFs. ■

7 TRACE-BASED EVALUATION
In this section, we describe a trace-based evaluation of an arrival-aware server provisioning strategy

for a MapReduce cluster. In contrast to an arrival-agnostic random strategy, we show that an arrival-

aware strategy that adapts the service rates to the intensity of the arriving job stream yields lower

job waiting times. To this end, we characterize the arrival process based on a datacenter trace [16].

7.1 Description of the dataset
The datacenter traces used in this work are from Google cluster management software and systems

that are publicly available [16]. The traces provide job time-stamps along with other relevant usage

data from a Google compute cell, recorded in 2011. We use job-events files and subsequently pick

the job arrival times by looking at job ID field. Further, we randomly select a starting time-stamp

and take the subsequent 10
4
consecutive time-stamps as input.
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Fig. 8. Comparison of the theoretical bound
with Monte Carlo box plots obtained from 10

3

independent simulation runs each with 10
6

jobs. We consider an FJ system with five work-
conserving servers. The inter-arrival times as
well as the service times are Markov modu-
lated. The modulating Markov chain takes
values in the set E = {1, 2, . . . , 64}. The
inter-arrival times are Gamma distributed and
the service times are distributed according to
shifted exponential distributions. All parame-
ters are randomly chosen.
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Fig. 9. Numerical study based on recorded traces from [16]. (Left) Job inter-arrival times against job numbers.
(Right) Q-Q plot of the data trace versus simulations of the fitted process.

7.2 Estimation Procedure
We model the given inter-arrival times as time interval between successive jumps of a Markov-

modulated Poisson Process (MMPP). In this work, we employ the Baum-Welch algorithm [12,

Section 23.3, p. 505] for the maximum likelihood estimation in a Hidden Markov Model to arrive at

the estimates for state intensities of the underlying exponential variables and the transition matrix.

We set the number of states, which describes the modulation of the arrival process, to 3 to model

low, medium and high arrival intensities. The mean arrival times corresponding to these states are

estimated to be (λ1, λ2, λ3) = (9.7638, 3.6215, 0.0054) seconds.

7.3 FJ System with arrival-aware Provisioning
Now, we present a numerical test case where we assume a cluster of twenty five heterogeneous

servers that are fed by Markov-modulated arrivals with the estimated transition probability matrix

and mean inter-arrival times mentioned above. Further, suppose each server can operate in three

service rate efficiency settings: high, medium, and low, which may correspond to how the servers

are shared with other applications. We assume the servers have exponential service times with

different rates that are generated randomly, satisfying the stability conditions. In order to design an
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Fig. 10. An FJ system with 25 servers fed by
a trace-based fitted arrival process. Service is
exponentially distributed with rates randomly
assigned. An arrival-aware provisioning (re-
active) is designed and compared against a
random assignment, which is arrival-agnostic.
The arrival-aware provisioning rearranges the
service rates of each of the servers so as to
have a high service rate when the arrival rate
is high. This leads to significantly lower wait-
ing times.
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arrival-aware provisioning, we need a rule of assigning these rates to the servers, i.e., modulating the

efficiency settings of the servers, when the modulating Markov chain makes a transition. In reality,

the modulating chain is unobservable except perhaps for some special cases (e.g., distinguishable job
types being represented by the chain). Therefore, to design an arrival-aware provisioning, one needs

to estimate the hidden state from observable inter-arrival times. Machine learning techniques can

be used to achieve this objective. But in light of U1, we do not attempt to do that here. For the sake

of demonstration, we devise an illustrative arrival-aware provisioning assuming the chain is visible.

A simple arrival-aware provisioning would try to match the service rates (or equivalently, the

efficiency settings) with the arrival rates. That is, the provisioning simply assigns the highest service

rate when the arrival rate is the highest, assigns the lowest, when the arrival rate is the lowest,

and medium otherwise. Mathematically, it just rearranges the service rates so that µn,i ≥ µn, j
whenever i > j for all n ∈ [N ], because the arrival rates satisfy λ1 > λ2 > λ3. This provisioning,
which is reactive in nature, is compared against an arrival-agnostic random assignment in Figure 10.

Here, we show simulation box plots along with our bounds on the tail probabilities of the steady-

state waiting times, represented by solid lines. Visibly, in case of arrival-aware provisioning, the

probability of long waiting times is significantly lowered.

PART C. BACKGROUND AND DISCUSSION
8 RELATEDWORK
The works most relevant to ours are [35, 49], where the authors establish a large deviations principle

for uniformly recurrent Markov-additive processes. Later on, several queuing theoretic results such

as the bounds on the tail probabilities of the steady-state waiting times in [23] have been derived

based on [35]. Further, inequalities for the stationary waiting times in GI/G/k queues were first

shown in [44]. Martingale techniques have been used to derive exponential upper bounds on the

tail probabilities of the queue length by means of maximal inequalities in [14, 23]. The authors in

[52] also provide exponential bounds on the tail probabilities of the stationary queue size and the

virtual delay, the amount of time a data unit would have stayed in the system had it departed at

a fixed time, using martingale techniques. Markov fluid traffic models for a single-node constant

service-rate queuing system are revisited in [20], where the authors provide upper and lower

bounds for the queue size distribution. In [45], the authors apply the theory of Markov-additive

processes to estimate the decay rate of the probability that, in a two-node tandem Jackson network,

the content of the second buffer exceeds some predefined level before becoming empty. In a recent

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article . Publication date: July 2019.



Wasiur R. Khudabukhsh, Sounak Kar, Amr Rizk, Heinz Koeppl. Provisioning and performance evaluation of parallel
systems with output synchronization. In ACM Transactions on Modeling and Performance Evaluation of Computing

Systems, Volume 4 Issue 1, March 2019.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a

non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works

here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works

may not be reposted without the explicit permission of the copyright holder.

Provisioning and performance evaluation of parallel systems with output synchronization 23

paper [15], the authors consider a d-node G/G/1 tandem queue with renewal input and independent,

iid service processes, and characterize the decay rate for the probability of reaching a total of N
customers during a busy cycle of the system. Note that these results are not directly applicable to

our setup because of the inherent synchronization at the output.

An exact analysis of Fork-Join systems [5, 58] in a general setup is hard [6, 13], and could be

carried out for a handful of special cases. Useful bounds have been provided in [6, 9, 55] using

probabilistic techniques. Stochastic network calculus has also been used to derive performance

upper bounds for FJ systems in [24, 40]. Transient and steady-state solutions of the FJ queue in

terms of virtual waiting times are obtained in [43]. Results for the special case of FJ systems with

two servers that have exponential service times under Poissonian job arrivals are shown in [26]. The

authors in [26] convert equilibrium joint probabilities for the queue lengths into functional equations

and derive their asymptotic limits. More recently, homogeneous FJ systems have been analyzed,

and an upper bound solution has been provided in [18] using dynamic bubblesort technology [17].

Stability conditions and bounds on the network response times are obtained for acyclic FJ networks

based on notions of stochastic ordering in [7]. Linear algebraic tools such as a matrix exponential

representation of the maximum order statistic of the service times in split-merge queues have been

used to derive approximate results for queue lengths and response times in FJ systems in [25]. In

[53], the authors consider a K-node homogeneous FJ system and approximate the response time

distribution for a Markovian arrival process and phase-type processing times. Instead of the actual

queue lengths in the FJ system, they keep track of queue length differences with respect to the

shortest queue rendering a state space reduction. They show this approximation yields accurate

results when K = 2, but becomes intractable for a larger K . For large values of K , they propose

further approximations based on the theory of order statistics and extreme values. In [50], the

authors present a product-form approximation of closed FJ systems with interfering requests using

the stochastic Petri nets (referred to as RB-n-m replication blocks in [50]). They consider both full

and partial forking. Their main tool to approximate the FJ system is the Reversed Compound Agent

Theorem (RCAT) for cooperating Markovian processes from [31].

The authors in [60] study the limiting behavior of finite buffer FJ systems. They study how

the throughput of a general FJ system with blocking servers behaves as the number of nodes

increases to infinity while the processing speed and buffer space of each node remain unaltered. On

another note, FJ networks with non-exchangeable tasks under a heavy traffic regime are studied in

[2], where the authors show asymptotic equivalence between this network and its corresponding

assembly network with exchangeable tasks. The authors of [64] provide necessary and sufficient

conditions for throughput scalability for FJ systems with blocking servers as they grow in size.

From the perspective of scheduling, [29] presents various policies in a distributed server system

and suggests optimal ones for different situations. Similarly, [34] attempts to quantify the benefits of

parallelization in a dispatching system, where jobs, arriving in batches, are assigned to single-server

FCFS queues. In [65], the authors study the distributed resource allocation problem in a processing

network where the processor nodes are allowed to involve a combination of FJ semantics. They

propose a unified modeling framework, and formulate the resource allocation problem as a convex

optimization problem. The work in [38] models a cloud computing scenario as an FJ system with

identical servers and analyzes different redundancy techniques with a view to reducing latency in a

cost-efficient manner. The authors find that the log-concavity of the task service times is crucial for

the success of redundancy techniques. Note that the underlying premises in these works are quite

dissimilar among themselves and from ours. For instance, the authors in [38] consider expected

latency and the mean computing cost as performance metrics; we, on the contrary, focus on tail

probabilities of steady-state waiting times under a more general distributional setup and changing

environments.
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The works [6, 42, 55] are close to ours and share similar objectives. The seminal work in [6]

provides computable bounds for the expected response times under renewal Poissonian arrival

and exponential service times. The work in [55] considers two-state Markov-modulated arrival

processes, and homogeneous, independent servers. Further, the work in [42] proposes stochastic

scheduling in FJ systems to determine how many servers out of a set of given ones should optimally

be chosen. In addition, [42] optimizes waiting and response time bounds for heterogeneous FJ

systems under a renewal setup. In this work, we provide results for the general case of Markov-

additive processes while allowing heterogeneous servers and arbitrary state space. Moreover, we

introduce provisioning, a flexible division of jobs into tasks in an FJ system. Finally, we provide

examples of FJ systems with Markov-modulated arrivals and service, as well as, a study of an

adaptive FJ system that uses estimates of the modulating Markov chains that control the arrivals

and the service processes to reactively adapt the task provisioning. The bounds presented in both

[55] and [42] can be seen as special cases of Theorem 2 in this paper because they can be obtained

by choosing state space E and the transition kernel (2.3) appropriately.

Performance of MapReduce has been analyzed in [21, 63]. The authors in [21] present MapReduce

as a programming model and show that many real world tasks are expressible in this model. On the

other hand, [63] points out that Hadoop’s performance depends heavily on its task scheduler, which

implicitly assumes homogeneous cluster nodes, and that it is adversely impacted in a heterogeneous

setup. To address this issue, they propose Longest-Approximate-Time-to-End (LATE) scheduling.

Similar optimization problems are surveyed in [32, 51]. Further, in [46] the authors point out

MapReduce efficiency issues, especially I/O costs, which still need to be addressed. The efficiency

of a MapReduce system, in general, requires tuning a number of parameters. In [4], the author

proposes an out-of-the-box automation technique to avoid manual tuning of the parameters. As

opposed to our theoretical standpoint, these articles provide a complimentary view from a practical

implementation perspective.

9 DISCUSSION AND CONCLUSIONS
In this paper, we provided computable upper bounds on the tail probabilities of the steady-state

waiting times based on a Large Deviations Principle, for general FJ queuing systems using a Markov-

additive process model. We applied our results to three specific application areas, and also presented

a formulation of provisioning, a flexible job division rule. Further, we demonstrated the usefulness

of this model by means of a numerical example where we applied our results to a real-world

datacenter trace. In this closing section, we highlight the strength of our model by mentioning

another way in which our results can be utilized.

9.1 Design of Proactive Mechanisms
Markov-additive processes are capable of modeling not only reactive but also proactive systems.

In Section 6, we modeled the changing environment with a Markov chain {Ck }k ∈N0
and devised

a reactive mechanism. For many applications, reactive mechanisms may be expensive, and it is

profitable to be able to anticipate the changes in the environment and act accordingly (e.g., set the
service rates). Our Markov-additive process framework allows for such a proactive provisioning

(see Figure 3). In this coupled model, the distribution of the increments XA
n,k+1, for each n ∈ [N ],

will also depend on Ck (as assumed in Example 1). Such a provisioning is promising as it allows

for a notion of agility and adaptation in parallel server systems. The preparedness aimed for in

proactive provisions could potentially reduce cost and yield a smoother transition.
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A APPENDIX A
Proof of Theorem 1. In the light ofA1,A2,A3, andA4, the following statements are immediate

from known results on large deviations of Markov additive process [35, 49],

B1 For all θ ∈ D, the transformed kernel L̃ in (2.4) has a maximal, real, simple eigenvalue λ(θ ).
B2 The corresponding right eigenfunction {r (c,θ ); c ∈ E} satisfying

λ(θ )r (c,θ ) =

∫
R
L̃(c, dτ ;θ )r (τ ,θ ),

is positive and bounded above.

B3 Dλ = Dν̃ = D.

B4 Define the filtration

Fk B σ ({(Ci ,Qi )}i ∈[k]), (A.1)

the σ -algebra generated by the history of the process {(Ci ,Qi )}i ∈[k ] till and including time

point k . Define

Mk (θ ) B exp (αQk − kΛ(θ )) r (Ck ,θ ), (A.2)

where Λ(θ ) B log λ(θ ). The processMk (θ ) is a martingale with respect to the filtration Fk .

B5 λ(θ ) → ∞ as θ → BndD or ∥θ ∥ → ∞. This further implies essential smoothness of Λ. This
is important for the application of Ellis’ theorem to establish an LDP.

Note that B1 and B2 are generalizations of the well known Perron-Frobenius theorem for real

matrices with positive entries. However, when the state space E is not finite, one could still obtain

similar results. The existence, and properties B1 and B2 follow from [30, 35]. Define π : E → [0, 1]
to be the invariant probability measure for L defined in (2.3). The following LDP holds [35] for the

sequence of probability measures {Lk (x , F × .)}k ∈N0
on (RN ,B(RN )),

lim sup

k→∞
k−1 logLk (x , F × kG) ≤ − inf

y∈ClG
Λ∗(y), (A.3)

lim inf

k→∞
k−1 logLk (x , F × kG) ≥ − inf

y∈IntG
Λ∗(y), (A.4)

for x ∈ E, F ∈ E,G ∈ B(RN ), where Λ∗(y) B supz∈RN {zy − Λ(z)} and F is such that π (F ) > 0.

To derive an LDP for the waiting times for our queuing system defined in (2.2), consider the

following map f : RN → R defined as

f (s) B max{s1, s2, . . . , sN }, (A.5)

where s B (s1, s2, . . . , sN ) ∈ R
N
. Note that f is a continuous map on RN with respect to the

topology endowed by the Borel open sets. Therefore, by the contraction principle for continuous

maps [22, Theorem 4.2.1] , { f (Qk )}k ∈N0
satisfies an LDP with good rate function

J (y) B inf

x ∈f −1(y)
Λ∗(x) = inf

x ∈ϒN (y)
Λ∗(x), (A.6)

where ϒN is defined in (2.5). Notice that f (Qk ) is simplyWk B max(X1,k ,X2,k , . . . ,XN ,k ) with

W =D maxk ∈N0
Wk . Therefore, by virtue of the contraction principle, we get

lim sup

k→∞
k−1 logP(Wk ∈ B) ≤ − inf

y∈Cl B
J (y)

lim inf

k→∞
k−1 logP(Wk ∈ B) ≥ − inf

y∈Int B
J (y),

for all B ∈ B(R). This completes the proof. □
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B APPENDIX B
Derivation of (2.13). We wish to solve the following integral equation for λ(n), and rn ,∫ b

a
exp

(
−
|y − x |

σ

)
rn(x , s) dx = Un(y, s) exp

(
λ(n)(s)

)
rn(y, s),

where Un(y, s) =
(
1 + s

y

) (
1 − s

µ (n)

)
u(y) and u(y) =

∫ b
a exp

(
−
|x−y |
σ

)
dx . Our strategy is to differ-

entiate the above integral equation with respect to y twice and then get a nonlinear Ordinary

Differential Equation (ODE), which can be solved numerically. Therefore, separating the integral

into two parts we get

exp

(
−
y

σ

) ∫ y

a
exp

( x
σ

)
rn(x , s)dx + exp

(y
σ

) ∫ b

y
exp

(
−
x

σ

)
rn(x , s)dx

= Un(y, s) exp
(
λ(n)(s)

)
rn(y, s).

Differentiating once with respect to y, we get

−
1

σ
exp

(
−
y

σ

) ∫ y

a
exp

( x
σ

)
rn(x , s)dx +

1

σ
exp

(y
σ

) ∫ y

a
exp

(
−
x

σ

)
rn(x , s)dx

= U ′n(y, s) exp
(
λ(n)(s)

)
rn(y, s) +Un(y, s) exp

(
λ(n)(s)

)
r ′n(y, s).

Differentiating once again with respect to y, we get

1

σ 2

(
exp

(
−
y

σ

) ∫ y

a
exp

( x
σ

)
rn(x , s)dx + exp

(y
σ

) ∫ b

y
exp

(
−
x

σ

)
rn(x , s)dx − 2σrn(y, s)

)
= U ′′n (y, s) exp

(
λ(n)(s)

)
rn(y, s) + 2U

′
n(y, s) exp

(
λ(n)(s)

)
r ′n(y, s) +Un(y, s) exp

(
λ(n)(s)

)
r ′′n (y, s).

Since the left hand side is
1

σ 2
Un(y, s) exp

(
λ(n)(s)

)
rn(y, s), after rearrangement of terms, we get

r ′′n (y, s) + 2
U ′n(y, s)

Un(y, s)
r ′n(y, s) +

(
U ′′n (y, s)

Un(y, s)
−

1

σ 2

(
1 −

2σ exp

(
−λ(n)(s)

)
Un(y, s)

))
rn(y, s) = 0.

□

Proof of Theorem 2. In the light ofA1,A2,A3, andA4, the following statements are immediate

from known results in probability theory, such as [35, 49],

C1 For all n ∈ [N ] and θ ∈ Dλ(n), exp
(
λ(n)(θ )

)
is the simple maximal eigenvalue of K̃n .

C2 The corresponding right eigenfunction {rn(c,θ ); c ∈ E} satisfying

exp

(
λ(n)(θ )

)
rn(c,θ ) =

∫
R
K̃n(c, dτ ;θ )rn(τ ,θ ),

is positive and bounded above.

C3 For all n ∈ [N ] , the functions λ(n) and λ(n)k , k ∈ N are both strictly convex and essentially

smooth.

C4 Recall the filtration Fk defined in (A.1). For each n ∈ [N ], define

M (n)k (s) B exp

(
sXn,k − kλ

(n)(s)
)
rn(Ck , s). (B.1)

Then,M (n)k (s) is a martingale with respect to the filtration Fk .
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The existence, and properties C1 and C2 follow from [30, 35]. The statements C3 and C4 are

proved in [35]. Also, see [23]. In the following, we normalize rn(.,θ ) so that E[rn(C0,θ )] = 1, for

each n ∈ [N ].

Having constructed the martingalesM (n)k (s), we can apply Doob’s maximal inequality to obtain

P(max

k ∈N0

Xn,k ≥ w) ≤ ϕn(s) exp (−sw) , (B.2)

for all s ∈ Dλ(n), following Theorem 3 of [23]. In particular, we get

P(max

k ∈N0

Xn,k ≥ w) ≤ ϕn(θn) exp (−θnw) , (B.3)

where θn B sup{s > 0 | λ(n)(s) ≤ 0} and ϕn(s) B ess sup{1(Xn,1 > 0)/rn(C1, s)}, after having
normalized rn(.,θ ) so that E[rn(C0,θ )] = 1, for each n ∈ [N ]. The final bound is obtained as follows

P(W ≥ w) ≤
∑
n∈[N ]

P(max

k ∈N0

Xn,k ≥ w) ≤
∑
n∈[N ]

ϕn(θn) exp (−θnw) .

This completes the proof. □

C APPENDIX C
Remark 2 (Minimum of hyperexponential random variables). Consider a collection of indepen-

dent random variables U1,U2, . . . ,UN , where Un is distributed according to a hyperexponential

distribution with parameters µn,1, µn,2, . . . , µn,kn and mixing probabilities pn,1,pn,2 . . . ,pn,kn , i.e.,

P(Un ≤ u) = 1 −

kn∑
i=1

pn,i exp
(
−µn,iu

)
.

Then, V = minn∈[N ]Un is also hyperexponentially distributed. To see this, note that

P(V > v) =
∏
n∈[N ]

kn∑
i=1

pn,i exp
(
−µn,iv

)
=

∑
π ∈[k1]×[k2]×···×[kN ]

©­«
∏
n∈[N ]

pn,πn
ª®¬ exp ©­«− ©­«

∑
n∈[N ]

µn,πn
ª®¬vª®¬ .

Therefore, the MGF of V is given by

E[exp (sV )] =
∑

π ∈[k1]×[k2]×···×[kN ]

©­«
∏
n∈[N ]

pn,πn
ª®¬
( ∑

n∈[N ] µn,πn∑
n∈[N ] µn,πn − s

)
. (B.4)

Remark 3 (Maximum of exponential random variables). For the computation of the MGF for the

blocking system, we make use of the following statistical result. Consider a finite collection of

independent random variables {Un}n∈[N ] such thatUn is exponentially distributed with rate µn , for
each n ∈ [N ]. Write µ = (µ1, µ2, . . . , µn). Then, the MGF of V B maxn∈[N ]Un is given by

E[exp (sV )] =β(µ; s) B
∑

S ∈{A⊂[N ] |A,∅}

(−1) |S |+1
(
∑

i ∈S µi )

(
∑

i ∈S µi ) − s
. (B.5)
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Proof of Remark 3. The CDF of V is given by P(V ≤ z) =
∏

i ∈[N ](1 − exp (−µiz)), whence we
derive the Probability Density Function (PDF) of V as

fV (z) =
∑
j ∈[N ]

µ j exp
(
−µ jz

) 
∏

i ∈[N ]\{j }

(1 − exp (−µiz))


=

∑
j ∈[N ]

µ j
∑

S ∈{A⊂[N ]\{j }}

(−1) |S | exp
©­«−z

∑
i ∈S∪{j }

µi
ª®¬

=
∑
j ∈[N ]

µ j
∑

S ∈{A⊂[N ] |j ∈A}

(−1) |S |+1 exp

(
−z

∑
i ∈S

µi

)
=

∑
S ∈{A⊂[N ] |A,∅}

(−1) |S |+1(
∑
i ∈S

µi ) exp

(
−z

∑
i ∈S

µi

)
.

Therefore, the MGF of V is given by

E[exp (θV )] =
∫ ∞

0

exp (θz) fV (z) dz =
∑

S ∈{A⊂[N ] |A,∅}

(−1) |S |+1
(
∑

i ∈S µi )

(
∑

i ∈S µi ) − θ
.

This completes the proof.
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